Si on reconnait l’évident avantage des voitures électriques à ne pas polluer les grandes villes (1) par l’émission de gaz à effet de serre (GES) par comparaison avec les voitures à moteur thermique, tout n’est pas aussi vert que ce que les constructeurs nous disent pour séduire nos élans de sauveurs de la planète.
Les constructeurs (et nous aussi !) ont une épée de Damoclès au-dessus de la tête !
- Obligation de ne produire que des véhicules électriques et d’arrêter les véhicules thermiques en 2035 (2)
- Obligation assortie par Bruxelles de menaces de sanction financière à partir de 2025 pour tout gramme de CO2e par km excédentaire sortant de leur production, ce qui d’après les directeurs des grandes marques européennes se chiffrerait à plusieurs dizaines de milliards d’euros ! On comprend mieux la publicité pour ces véhicules (wattures) affichant « zéro CO2e/km » (i) pour convaincre ainsi Bruxelles de leur vert(u).
Une voiture électrique est-elle écologique ?
Réfléchissons un peu : prenons l’exemple d’une citadine moderne dotée d’une batterie lithium (3) NMC de 45 kWh.
Elle consomme environ 15 à 20 kWh/100 km si elle roule en France et si la recharge y a été faite. Comme notre mix électrique (à majorité nucléaire 75%, et hydroélectrique 15%) correspond à une émission de 50 g CO2e/kWh, elle émet de façon indirecte entre 7,5 et 10 g CO2e/km (ville, route, autoroute) et non zéro.
Si elle roule en Allemagne avec un mix électrique (à majorité gaz, pétrole et charbon, 61%…) correspondant à 350g CO2e/kWh, elle va émettre entre 50 et 70 g CO2e/km. Je n’ose pas rouler en Hongrie ni en Chine où ma petite citadine dégagera entre 80 et 120 gCO2e/km, quasiment plus que son modèle thermique.
La publicité nous ment donc et j’approuve les associations de consommateurs à réclamer une meilleure information des acheteurs. D’autant que si nous nous penchons sur le cycle de vie (4) nous appuyons là où ça fait mal !
Imaginons que l’on conserve notre petite watture 16 ans (soit 2 fois 8 ans pour une durée raisonnable de la batterie) et que nous parcourions 10 000 km/an : en fin de vie, en France nous aurions émis entre 1,3 et 1,6 t CO2e. Comparons à l’émission de la même citadine thermique à la limite du malus (100 g/km) qui va émettre après 160 000 km 16 t de CO2e soit 10 fois plus. Il y a donc là un très large avantage à la voiture électrique.
Oui mais imaginons que la dépense énergétique pour fabriquer la caisse et les moteurs des deux exemplaires soit à peu près la même. Il faut y ajouter pour la « watture » la fabrication du pack de batteries. On estime qu’il faut pour sa fabrication de l’ordre de 12 000 à 15 000 kWh. Hélas la plupart des batteries sont fabriquées en Chine ce qui représente avec un mix de 550 g CO2e/kWh, 8,25 t CO2e qu’il faut ajouter aux 1,6 t soit 9,85 t à comparer aux 16 t de la citadine thermique. Ceci montre qu’en France on a intérêt à rouler en voiture électrique et, mieux encore si la batterie est issue d’une gigafactory qui se monte sur notre territoire car les 8,25 t chinoises maigriraient à 0,75 t. Cocorico vive le made in France.
Je vous laisse faire le calcul pour rouler et fabriquer en Allemagne ou en Tchéquie ou Hongrie, l’avantage s’amenuise beaucoup trop.
Quoi qu’il en soit en ajoutant la dépense de fabrication de la batterie notre « watture » est justiciable maintenant d’environ 60 g CO2e/km et non 0 g et on n’a pas pris en compte le remplacement possible du pack après 8 ans. Il est vraiment urgent que l’Etat et les constructeurs réforment l’étiquette énergie.
L’aspect économique et industriel
Á l’ouverture du Salon de l’Auto, l’industrie automobile Européenne est morose. La chute des ventes des voitures électriques en Allemagne suite à la suppression de la prime d’achat entraine une fermeture d’usines VW (une première depuis 1945). En France les ventes se tassent. Les grands PDG de Renault, Peugeot Stellantis, Volkswagen se demandent comment survivre. Car dans les ports européens arrive la déferlante chinoise, les marques BYD, MG Motor, Aiways, Leapmotor envahissent le marché européen avec des voitures électriques performantes et moins couteuses que nos modèles malgré le transport de plusieurs milliers de kilomètres. Les experts qui visitent les nouvelles usines autour de Shenzhen sont bluffés par l’armée de robots faisant virevolter les pièces et les plaçant avec précision avec quelques points de soudure. Ils sont aussi impressionnés par les presses de « gigacasting » moulant les carrosseries aluminium à haute pression. Si en 1970 les Chinois ont bien appris de l’expertise européenne des voitures et moteurs thermiques, depuis 2000 ce sont les européens qui doivent acquérir le savoir-faire chinois dans les voitures électriques et aussi dans la fabrication des packs de batteries. Car là aussi si les Européens et les Américains ont été les inventeurs des batteries lithium-ion, ce sont les Chinois qui sont devenus les maitres de la chimie des batteries NMC (Nickel, Manganèse, Cobalt) et maintenant des LFP (lithium, fer, phosphate) (5) comme CATL qui détient 38% du marché mondial. La firme chinoise consacre près de 5% de son budget à la R&D, les batteries au sodium et tout solide sont en préparation, d’où l’incertitude et l’attentisme qui gagnent les investisseurs des gigafactories européennes.
Votre mobilité personnelle
Adopterez-vous la mobilité électrique ? Une très intéressante étude de l’UFC Que Choisir (6) montre les avantages et désavantages des modèles électriques. Un prix 30% plus élevé que les modèles thermiques, mais une rentabilité économique championne si on dispose d’une prise « wall box » dans son garage avec un carburant EDF kWh Heures Creuses, à environ 0,20 €, ce qui met les 100 km à 3 € au lieu de 9 € pour la petite citadine-diesel. Malheureusement en ville, et dans les immeubles collectifs, rares sont les prises individuelles et là, comme sur autoroute les bornes affichent une moyenne de 0,60 €/kWh ce qui donne une dépense équivalente au thermique (9 € pour 100 km). De plus, pour les modèles d’autres segments - compacte, berline, SUV - le poids intervient sur la consommation et des études comparatives mettent en évidence divers points de bascule de rentabilité de 60 000 à 100 000 km entre l’électrique et le thermique. L’entretien pour un véhicule électrique est plus simple car il y a moins de pièces en mouvement comme dans un moteur thermique. Il n’est pas moins couteux car on manque d’ouvriers qualifiés en électricité et électronique en ce domaine. Le fonctionnement complexe des batteries peut aussi donner lieu à quelques « bugs » et les spécialistes de dépannage manquent encore. Tesla a ses propres spécialistes, un réseau « Revolte » a formé plus de 200 spécialistes en France chez les concessionnaires, capables de tout réparer, chargeurs, logiciels, cartes électroniques, composants des batteries… Même après un accident.
Les prix élevés des modèles électriques la diminution ou la suppression des aides à l’achat expliquent la crise actuelle qui frappe l’automobile. Heureusement le Salon de l’Auto va montrer l’émergence de nouveaux modèles Renault R5 e-tech, Citroën ë-C3 à moins de 25 000 €. Le nombre de points de recharge a aussi atteint le chiffre de 140 000 en septembre 2024, avec une répartition très variable suivant les régions, mais on en programme un million pour 2035.
Avant tout achat, prenez le temps de la réflexion. Suis-je un petit ou un gros rouleur ? Ville, autoroute ? Quelle autonomie ? Quel segment d’automobile ? Quelle consommation moyenne en kWh ? Quelle émission de CO2e ? Puis je disposer d’une borne personnelle ?
Les associations de consommateurs appellent à une meilleure information, mais soulignent que la voiture électrique n’est pas la panacée. Elles pensent que les primes à la conversion seraient mieux utilisées par les pouvoirs publics à investir dans les transports collectifs. Elles citent l’effet de rebond en Norvège où les utilisateurs de véhicules électriques prennent de moins en moins les transports en commun.
Alors ? Achetez de bonnes chaussures, graissez votre bon vieux vélo, sachez que l’exercice physique est aussi bon pour vous comme pour la planète !
Jean-Claude Bernier
Octobre 2024
(i) (CO2e) pour CO2 équivalent, unité créée par le GIEC pour mesurer et comparer les effets climatiques d’un gaz à effet de serre, sachant que les différents gaz n’ont pas le même impact sur l’effet de serre et ont une durée de vie dans l’atmosphère différente.
Pour en savoir plus
(1) La mobilité urbaine, S. Delalande, Colloque Chimie et grandes villes, 9 novembre 2016
(2) La voiture intelligente (vidéo), F. Demerliac, collection Des idées plein la tech'
(3) Le lithium, un élément chimique indispensable pour notre mobilité actuelle, É. Bausson, fiche Chimie et... en fiche lycée (Mediachimie.org)
(4) Chimie pour un développement durable, Fédération française pour les sciences de la chimie (FFC)
(5) Un Nobel de chimie populaire, J.-C. Bernier, éditorial Mediachimie.org et Accumulateur « Lithium –Ion » : une révolution technologique portable ! (vidéo), R. Blareau et F. Brénon
(6) Véhicule électrique d’indispensables révisions sur l’information et le signal prix, UFC Que choisir
Crédit illustration : © Adobe Stock Patrick J.
Décidément la prestigieuse académie suédoise est séduite par l’intelligence artificielle. Après le prix Nobel de physique décerné à deux spécialistes des réseaux de neurones en électronique avancée, le prix Nobel de chimie a récompensé des chercheurs qui se sont servis de l’intelligence artificielle pour transformer les recherches sur les structures tridimensionnelles des protéines. La moitié du prix a été décerné à 2 spécialistes, un anglais Demis Hassabis et un américain John Jumper qui appartiennent tous deux à l’entreprise Google DeepMind pour y avoir développé un programme d’IA nommé « AlphaFold » qui permet de prédire la structure complexe des protéines à partir de données sur des acides aminés. L’autre moitié du prix revient à David Baker, un biochimiste de l’université Washington à Seattle, qui réussit à concevoir des protéines entièrement nouvelles.
Ces découvertes ont une importance primordiale en biologie, car les protéines sont les molécules de la vie, elles sont dans les muscles qui nous donnent la force, dans les anticorps qui nous protègent des maladies et aussi dans celles qui lisent et copient l’ADN.
On se rappelle tous les études des structures par cristallographie à Grenoble à l ESRF ou à Saclay sur SOLEIL complétées par RMN, elles pouvaient prendre plusieurs mois. Ces travaux menés depuis plus de 40 ans dans tous les pays ont permis de nourrir une base de données internationale qui contient plus de 200 000 protéines avec leurs structure. C’est le fruit de plusieurs décennies de recherche, mais c’est encore peu en comparaison des 100 fois plus de protéines existant dans la nature.
Les protéines sont comme des chaines ou des colliers dont les maillons ou les perles sont des acides aminés. La façon dont elles s’enroulent est très importante, on parle de repliement de la protéine, qui lui donne ses propriétés. Avec le programme Alphafold en rentrant une séquence d’acides aminés, l’IA donne la structure tridimensionnelle de n’importe quelle protéine.
David Baker procède presque à l’inverse du programme Alphafold de ses collègues de Google Deepmind. On propose une structure 3D que l’on veut produire et son programme optimise la séquence d’acides aminées qui pourrait donner une protéine stable. C’est ainsi qu’il a développé une protéine nouvelle capable de bloquer la protéine Spike responsable du Covid-19. On voit là un champ immense qui s’ouvre pour la recherche de nouveaux médicaments en sachant l’importance des formes des récepteurs pour affuter des protéines sachant les copier afin d’annihiler les protéines dysfonctionnelles que nous avons dans notre corps lors d’une maladie.
La Fondation de la maison de la chimie avait déjà bien perçu l’importance de l’IA pour la chimie ; elle avait sensibilisé en février 2023 le grand public et les jeunes lycéens sur ce sujet brûlant au sein d'un colloque Chimie et Intelligence artificielle. Citons notamment les 2 conférences plénières de François Xavier Coudert, directeur de recherche CNRS, professeur attaché ENS – Université PSL, et de Carlo Adamo, Directeur Institute of Chemistry for Life and Health Sciences (i-CLeHS) – Chimie ParisTech, et la conférence de clôture de Cédric Villani, Université Lyon I, Institut des Hautes Études Scientifiques.
L’intelligence artificielle en recherche ne remplace pas le chercheur mais elle lui permet de manipuler des millions de données en un temps record c’est un accélérateur de découvertes !
Jean-Claude Bernier
Octobre 2024
Pour en savoir plus
Colloque Chimie et intelligence artificielle, Fondation de la maison de la chimie, février 2023, accès aux videos et articles des conférences sur Mediachimie.org
Concepts d’IA et Machine Learning ; utilisation en chimie ; les méthodes d’IA comme nouveau langage, François Xavier Coudert, article et vidéo, Colloque Chimie et intelligence artificielle, Fondation de la maison de la chimie, février 2023
L’Intelligence Artificielle comme moteur dans la recherche en chimie, Carlo Adamo, article et vidéo, Colloque Chimie et intelligence artificielle, Fondation de la maison de la chimie, février 2023
Intelligence artificielle pour la science et l’industrie, Cédric Villani, article et vidéo, Colloque Chimie et intelligence artificielle, Fondation de la maison de la chimie, février 2023
L'intelligence artificielle, un moteur dans la recherche en chimie !, Éric Bausson, Fiche Chimie et… en fiches lycée, Mediachimie.org
Quoi de plus simple et anonyme que la molécule H2O, elle est pourtant vitale (1). Notre corps en contient plus de 65% soit 45 litres si vous pesez 70 kg. Sur notre bonne vieille planète l’eau est essentiellement sous forme d’eau salée, 97,5% (mer et océans), et l’eau douce ne représente donc que 2,5%. Mais seulement 30% de cette eau douce constitue les nappes phréatiques et les rivières, le reste étant sous forme de glace ou de neige.
En France ce sont des milliers de rivières, fleuves, cours d’eau et ruisseaux qui serpentent sur 500 000 km et sous nos pieds 2000 milliards de m3 sont stockés dans nos nappes phréatiques. Sans eau il n’y a pas de vie et on sait quel rôle essentiel elle joue dans notre alimentation, nos sources d’énergie (2) et notre industrie. Rien d’étonnant alors que les épisodes de sécheresses, de cumuls de précipitations, de pollutions, de pressions agricoles et urbaines trouvent de larges échos dans les médias et l’opinion. Pour répondre à ces problèmes y a t-il encore de la recherche sur les technologies liées à l’eau ? Essayons par trois exemples d’esquisser une réponse.
La lutte contre les espèces exotiques envahissantes
C’est un véritable fléau à l’échelle mondiale ! Ces espèces étouffent la vie aquatique, gênent l’écoulement dans les rivières et canalisations et sont sources de dégâts à l’environnement et de pertes économiques. Claude Grison et son laboratoire montpelliérain en étudiant des espèces comme la laitue de mer et la Jussie d’eau ont découvert qu’une bonne partie de la plante était au contraire capable de dépolluer l’eau (3). Transformées en fine poudre, elles sont des filtres très efficaces pour récupérer des métaux comme le palladium, le manganèse, le zinc et le nickel. Elles peuvent aussi être utilisées pour la récupération de polluants comme les herbicides.
La valorisation de ces découvertes est réalisée par une startup qui va transformer ces poudres gorgées de microparticules métalliques comme catalyseurs pour diverses réactions chimiques industrielles en remplacement de ceux issus des extractions minières. L’équipe de Montpellier espère avec ses partenaires industriels monter en puissance ces solutions de dépollution grâce à ces plantes envahissantes dont la croissance risque d’être accélérée par le changement climatique.
La pollution chimique organique
La chimie analytique a fait d’énormes progrès depuis 20 ans. Les procédés de séparation, d’extraction, et de caractérisation ; chromatographie inverse ou d’exclusion, spectrographies de masse… permettent d’identifier les polluants à des concentration très faibles comme le ppb (microgramme par kilo) et même moins. On est donc capable de caractériser les micropolluants (4) dans l’eau. Hélène Budzinski et son laboratoire de Bordeaux, l’EPOC, savent caractériser des milliers de molécules organiques. Mais d’après elle, alors qu’il y en a des millions, un enjeu de taille se dresse pour les chercheurs en chimie analytique : comment analyser ce qui n’est pas encore connu ! Ce projet novateur se fait en collaboration avec la régie de l’eau de Bordeaux (5). Il va demander de grands progrès méthodologiques de séparation et d’identification pour anticiper des actions sur des polluants potentiellement toxiques dont la recherche et l’analyse ne sont pas encore réglementées. Le challenge va aussi plus loin car on peut observer des effets sur la santé, la faune, l’environnement sans identifier les polluants et l’inverse est aussi possible. Un pesticide n’est peut-être pas en cause puisque l’effet escompté n’est pas constaté mais le mélange avec d’autres herbicides par un effet cocktail peut être impactant. S’y ajoutent des conditions environnementales, pH, température, turbidité… qui peuvent intervenir. Le projet de recherche mené par le CNRS, la régie de l’eau et l’office français de la biodiversité va essayer de caractériser par la chimie couplée à des bio-essais l’impact de rejets dans un affluent de la Garonne.
La prédiction des ressources et de la consommation
La recherche d’une meilleure qualité de l’eau au robinet c’est bien, mais la disponibilité de la ressource, son usage, sont aussi pour les collectivités locales une préoccupation constante (6). On l’a vu cet été lors du stress hydrique de certains départements et villes du sud de la France. C’est ainsi qu’un laboratoire de Mathématique du CNRS à Nice travaille avec la régie Eau Azur sur un projet complexe. Comment modéliser la prévision des demandes en eau des usagers au moins trois semaines à l’avance et aussi en amont prévoir le niveau des nappes phréatiques sur plusieurs mois.
Un premier modèle s’appuyant sur des méthodes statistiques classiques et sur un traitement des données par intelligence artificielle fournit des prévisions à six jours encore loin des six mois ! Mais il y a un réel intérêt scientifique à développer un outil mathématique de pointe pour traiter un sujet concret et utile. Le problème est bien sûr les prédictions météorologiques aléatoires qui influencent les niveaux des nappes. Mais la prédiction du stock disponible et du prélèvement permettra d’arrêter ici les pompes, là de les conserver, sans risques de pannes et des couts associés à ces défaillances et aux réparations. L’objectif pour les collectivités locales est de mieux gérer l’eau actuelle et future, prévoir la demande et dimensionner de nouveaux réservoirs si nécessaire.
En France la recherche dans la filière eau rassemble plus de 200 laboratoires et près de 3000 personnes à travers le CNRS, le BRGM, l’INRAE et plusieurs universités (7). Il s’agit d’accroître les connaissances sur les polluants, leur détection et leur élimination, les risques naturels, inondations et sécheresse, la valorisation des eaux usées, les réseaux de distribution intelligents, les nouveaux matériaux d’infrastructure de canalisation et les accès aux ressources. Le PEPR (Programme et équipements prioritaires de recherche) « One water - eau bien commun » financé sur 10 ans accélère la recherche académique et industrielle en ce domaine. Il sera décrypté lors du colloque « chimie et eau » du 6 novembre prochain.
Jean-Claude Bernier
Septembre 2024
Pour en savoir plus
(1) L’eau, une ressource essentielle à la vie, D. Soissons, dossier Nathan / Fondation de la Maison de la Chimie (Mediachimie.org)
(2) L’eau et l’énergie sont-elles dépendantes ?, A. Charles, N. Baffier et J.-C. Bernier, fiche Chimie et… cycle 4 (Mediachimie.org) et Pourquoi économiser l’eau potable est-il aussi source d’économie d’énergie ? F. Brénon et O. Garreau, Question du mois (Mediachimie.org)
(3) Zoom sur la phytoremédiation des métaux lourds, J.P. Foulon, Zoom sur… (Mediachimie.org)
(4) L’eau, sa purification et les micropolluants, M. Coquery et S. Martin Rue, in Chimie et nature (EDP Sciences) 2012, isbn : 978-2-7598-0754-3
(5) La bataille de l’eau propre, C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, in La chimie et la sécurité des personnes, des biens, de la santé et de l'environnement, collection Chimie et... Junior, EDP Sciences, Fondation de la Maison de la Chimie
(6) L’eau ressource indispensable pour la ville, A. Charles, A.Harari et J.-C. Bernier, fiche Chimie et… cycle 4 (Mediachimie.org)
(7) Les chimistes dans les métiers de l’eau, F. Brénon et G. Roussel, série Les chimistes dans… (Mediachimie.org)
Crédits :
- Figure : répartition de l'eau sur Terre. DR.
- Illustration : Goutte d’eau, José Manuel Suárez/Wikimedia Commons CC BY 2.0
Le terme « perform + ance » a pour signification « ce qui est accompli, une chose effectuée ». Que ce soit pour les arts, le théâtre, dans le sport ou dans notre vie quotidienne, cette notion est de plus en plus présente.
Si lors des Jeux Antiques, les athlètes devaient juste être les plus forts, les premiers sur la ligne d’arrivée, de nos jours s’ajoute à ce concept d’être le/la meilleur(e), celui de la performance sportive. Il faut non seulement monter sur un podium mais en plus, battre un record (le sien ou celui existant au niveau européen ou mondial), bref performer dans des contextes parfois complexes (conditions météo, acoustiques, concurrence accrue, minima, sélections…).
Les athlètes, valides ou porteurs de handicap, sont obnubilés par ce concept. Les fédérations sportives et les coachs ne le sont pas moins. C’est pourquoi, chacun sollicite chercheurs, industriels dont de nombreux chimistes… la science en général pour imaginer des process, des équipements, des matériaux, des produits « licites » permettant d’accroître leurs performances. D’ailleurs, le lieu sacré en France d’entrainements des athlètes et para-athlètes de haut niveau ne s’appelle-t-il pas l’INSEP (Institut national du sport, de l’expertise et de la performance) et la devise olympique n’est-elle pas « Plus haut, plus vite, plus fort – ensemble » ?
Aller plus vite, optimiser sa pénétration dans l’air, personnaliser la charge de travail en fonction de la morphologie, pouvoir bénéficier de textiles compatibles avec des efforts longs ou dans des conditions extrêmes… pour tous ces objectifs, la science apporte son savoir-faire, ses batteries de données qui permettent d’apporter des solutions individuelles ou plus globales pour cette quête de performance.
À l’approche des Jeux Olympiques et Paralympiques de Paris 2024, ce terme sera sur toutes les lèvres, dans tous les esprits. Les scientifiques ont travaillé dur pour réfléchir à des textiles, des matériaux plus souples, plus légers et résistants, apporter données et savoirs pour que les sportives et sportifs se sentent prêts et compétitifs pour performer !
Jean Gomez
Pour en savoir plus
Colloque Chimie et Sports, Fondation de la maison de la Chimie, février 2024
Chimie dans le sport - Sports et matériaux, É. Bausson, dossier Nathan / Fondation de la Maison de la Chimie (Mediachimie.org)
Quels matériaux pour les prothèses des para-sportifs ?, A. Harari, Question du mois (Mediachimie.org)
Des textiles pour sportifs, apport de la chimie pour améliorer confort et performances, F. Roland, La chimie et le sport (EDP Sciences, 2011) isbn : 978-2-7598-0596-9, p. 239
Crédit illustration : Flickr, domaine public
Les vélos du Tour de France
Avec le Tour de France 2024 parti d’Italie fin juin et deux Français vainqueurs des deux premières étapes l’audience télévision explose en Europe. Ce sont des centaines de milliers de spectateurs sur les routes et des millions de téléspectateurs sur leurs canapés qui suivront les coureurs sur leurs petites merveilles de technologie que sont devenus les vélos de course.
Loin des vélos en acier des années 1913 réparables dans une forge par Eugène Christophe, la demande de légèreté des machines a exigé d’abord des épaisseurs de tubes du cadre de plus en plus faibles, puis le remplacement de l’acier par l’aluminium et plus récemment l’usage des composites carbone qui apportent le faible poids et une rigidité améliorée (1). Tous les vélos des équipes du Tour de France ont maintenant non seulement des cadres moulés en fibre de carbone + polyester mais aussi des roues en carbone pour que le poids avec les accessoires soit de l’ordre de 7 kg (2).
Parlons d’ailleurs des accessoires. Pour transmettre l’effort, le moyeu du pédalier est muni d’un capteur d’effort qui traduit au coureur la puissance qu’il dépense, en watt. Depuis quelques années les roulements « en céramique » (3) disposent de billes en alumine dans les couronnes d’acier, très dures sur des surfaces de contact réduites et améliorent ainsi de plus de 80% le glissement et la fluidité des pièces en mouvement. Il en est de même pour le dérailleur électromagnétique qui peut être commandé par un « shifter », un petit bouton sur le guidon qui par bluetooth commande les changements de vitesse. Enfin, depuis longtemps, les bons vieux freins à patins ont été abandonnés. Ce sont des freins à disques sur les moyeux des roues à commande, soit hydraulique, soit électrique. Par ailleurs sur les roues en carbone les boyaux et chambres à air ont laissé place aux tubeless qui contiennent un solvant avec un polymère qui, en cas de crevaison limitée, comble le trou et permet au coureur de rouler encore un peu (4). Chaque vélo est adapté à la taille du coureur et à sa recherche d’aérodynamique, pour cela la tige du guidon est abaissée et même la tige de selle est creusée à l’arrière d’une cavité qui diminue la trainée arrière. Toutes ces améliorations technologiques n’ont qu’un seul but, améliorer le rendement énergétique , donc faire économiser quelques « wattheures » au coureur et diminuer son rythme cardiaque. Bien sûr la Fédération internationale a veillé à ce que ces progrès technologiques ne rompent pas l’égalité des chances et elle a limité le poids minimum des machines à 6,8 kg. Ne vous y trompez pas le coût de ces superbes vélos n’est pas à la portée du tout-venant, il est compris entre 12 000 et 20 000 €. Quand on sait qu’il y a entre 1000 et 2000 vélos qui se baladent dans la caravane du Tour voilà une caravane en or !
Le vélo de tout le monde
J’espère que vous avez payé moins pour votre vélo. En Europe la mode et le souci de préserver notre environnement continuent à soutenir le marché du vélo. Il s’en est vendu environ 25 millions en 2023 dont à peu près 20% avec assistance électrique (VAE). En France, le marché représente un CA de 3,5 Mrd € avec 2,23 millions de machines vendues à un prix moyen de 980 € dont 700 000 VAE au prix moyen de 1 900 €.
Alors avez-vous bien contribué à la préservation de notre chère planète ? Si vous avez un VAE l’empreinte carbone en France est de l’ordre de 17 g (CO2e)(i)/km parcouru si vous gardez votre engin 15000 km. C’est légèrement plus que pour un vélo ordinaire mu par la force musculaire qui est de 11 à 13 g CO2e/km parcouru. Ces chiffres sont très bons comparés au TGV 35 g CO2e/km parcouru par passager, 70 g CO2e/km pour une voiture électrique et plus de 100 g CO2e/km pour une voiture thermique. Seule la marche à pied (1 à 2 g CO2e/km) et le métro (8 à 10 g CO2e/km) sont plus performants que le vélo. L’essentiel de cette empreinte carbone est dû à la fabrication. Prenons un vélo de 20 kg en aluminium : la production du cadre en Chine exige 181 kg CO2e ; s’il est à assistance électrique il faut ajouter 20 kg CO2e pour la batterie et 37 kg CO2e pour le moteur. Comment réduire son empreinte carbone ? il est clair que s’il était fabriqué en France, avec de l'aluminium de recyclage ou de refusion, de 181 kg CO2e on passerait à peine à 20 kg CO2e (compte tenu de l'énorme différence d'énergie entre l'aluminium primaire et celui de seconde fusion et des mix électriques Français et Chinois comparés). Et encore moins si par « retrofit » (ii) on transformerait votre bon vieux vélo en VAE.
Bien, me diriez-vous : « mais je consomme de l’électricité ! ». Les batteries des voitures électriques (5) ont mauvaise réputation à cause de leurs poids, mais sur le VAE la batterie est bien plus petite et d’une capacité souvent inférieure à 1 kWh. Par exemple, pour faire 100 km un VAE demande environ 1 kWh ce qui représente en France 0,5 g CO2e/km parcouru soit moins de 4% des émissions totales, et en Allemagne 4 g CO2e/km un peu plus à cause du mix électrique.
Si vous êtes passionnés de cyclisme et d’environnement on peut encore améliorer l’empreinte carbone du VAE avec d’autres matériaux comme un cadre en bois ou en fibres de carbone recyclées ou en aluminium vert (6) avec des batteries au sodium (7) plutôt qu’au lithium, etc.
La forme physique
En cette année olympique n’oubliez pas que tous les jours faire du vélo vous fait perdre des calories par km parcouru et entretient votre moteur personnel : le cœur. Grâce aux hormones fabriquées par le cerveau au cours de l’effort, comme l’endorphine, vous vous sentirez mieux (8).
On a parfois accusé nos champions qui montraient une débauche de « watts » lors d’ascensions en montagne, d’avoir dissimulé dans le cadre de leur vélo de course un micromoteur et une micro-batterie électrique : les contrôles par infrarouge en course et par rayons X au garage ont montré que c’était faux. Par contre le dopage chimique par détournements de médicaments reste toujours possible, mais la chimie analytique fait continuellement des progrès et les risques de se voir rattraper par la patrouille toujours plus probables.
Pour vous en pédalant au fil des kilomètres, dopez-vous de grand air pur et de paysages apaisants, alors vous réussirez vos vacances.
Jean-Claude Bernier
Juillet 2024
(i) (CO2e) pour CO2 équivalent, unité créée par le GIEC pour mesurer et comparer les effets climatiques d’un gaz à effet de serre, sachant que les différents gaz n’ont pas le même impact sur l’effet de serre et ont une durée de vie dans l’atmosphère différente.
(ii) rénovation
Pour en savoir plus
(1) Les matériaux dans le sport, (r)évolutionnaires !, P. Bray, O. Garreau et J.-C. Bernier, fiche Chimie et... en fiches cycle 4 (Mediachimie.org)
(2) Les matériaux de la performance C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, La chimie dans le sport, collection Chimie et... Junior (EDP Sciences, 2014)
(3) Les céramiques et les réfractaires, indispensables à l’industrie primaire, J. Poirier, Colloque Chimie et matériaux stratégiques, novembre 2022
(4) Comment fabriquer des pneus à partir d’un arbre ? La vulcanisation, J.-C. Bernier, série Réaction en un clin d'œil (Mediachimie.org)
(5) Le lithium un élément chimique indispensable pour notre mobilité actuelle, É. Bausson, fiche Chimie et... en fiches cycle 4 (Mediachimie.org)
(6) Comment verdir les métaux ? J.-C. Bernier et F. Brénon, éditorial (Mediachimie.org)
(7) Les batteries sodium-ion, J.-C. Bernier, éditorial (Mediachimie.org)
(8) Sport et cerveau, C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, La chimie dans le sport, collection Chimie et... Junior (EDP Sciences, 2014)
Crédit illustration : Pexels / Pixabay
On ne sait pas comment est mort Philippidès après avoir parcouru les 42 km entre Marathon et Athènes pour annoncer la victoire sur les Perses, à bout de souffle ou les pieds meurtris, car il n’y avait dans l’Antiquité ni revêtement des chemins ni chaussures adaptées à la course. Depuis le renouveau des Jeux Olympiques on porte maintenant une grande attention non seulement aux athlètes et aux champions mais aussi à leur environnement stades, pistes de courses, accessoires sportifs (1). La piste d’athlétisme où sont courues la plupart des épreuves de sprint et de fond a une grande importance dans ces jeux.
Un peu d’histoire
En Europe c’est vers 1850 que les stades ont pris leur forme actuelle composée d’une piste oblongue, deux lignes droites et deux courbes les réunissant faisant environ 400 m ou 440 yards. Sur le modèle des jeux de la Grèce Antique qui à Olympie aux alentours de 800 ans av. J.-C. regroupaient les athlètes venant de toutes les régions sous domination grecque.
Au XIXe siècle et début du XXe les pistes étaient cendrées (on brulait pas mal de charbon à cette époque), composées de terre et de cendres et l’anneau de la piste était séparé en couloirs (6 à 9) pour les courses de sprint à l’aide de cordes suite à une contestation lors du 400 m aux jeux de 1908. Ces cordes assez gênantes entre compétiteurs voisins furent vite abandonnées au profit de marquages au sol à l’aide de peinture blanche ou de poudre blanche. Ces pistes grises cendrées favorisaient les chutes, dérapages et les blessures. Les revêtements furent remplacés progressivement par de l’herbe ou par de la brique pilée après 1930, ce qui va leur donner une teinte rouge orangée comme sur les terrains de tennis. La technique s’étant améliorée le terrain de la piste comprend plusieurs couches : des cailloux ou graviers – du mâchefer – du calcaire concassé – de la brique broyée finement le tout damé sur environ 6 cm.
Puis dans les années 1950 on arrive à remplacer le revêtement des routes par de l’asphalte (2) qui comprend du goudron issu de la distillation du charbon avec beaucoup d’hydrocarbures non saturés comme liant et un granulat de gravier. À cause de son caractère cancérigène le goudron sera progressivement remplacé par le bitume issu des fractions lourdes du pétrole comportant elles des hydrocarbures saturés. Les années 1960 montrent des pistes d’athlétisme nouvelles, avec un colorant rouge. Ces pistes bitumées (10% de bitume et 90% de granulat de tailles choisies) vont apporter un entretien facilité une porosité contrôlée pour l’évacuation des pluies et une durée améliorée. Mais elles seront vite détrônées.
Les pistes modernes
En 1959 le directeur de 3M du Minnesota passionné de course de chevaux souhaite une piste pour eux ménageant leurs muscles et évitant les blessures. 3M étant spécialisé dans les films plastiques, il teste alors un revêtement constitué d’élastomère et de caoutchouc dans un élevage de chevaux appelé « Tartan », le nom restera bien qu’il n’ait rien à voir avec un vêtement traditionnel écossais. Ce « ruban » s’avérera trop couteux pour les kilomètres de piste d’un hippodrome, aussi 3M le propose aux stades d’athlétisme. C’est ainsi que dès les Jeux de 1968 à Mexico une piste en Tartan « rouge » est inaugurée. Est-ce la qualité de la piste ou l’altitude à 2200 m qui entraine une exceptionnelle chute des records olympiques précédents ? Les deux sans doute (3).
Après, les pistes évolueront en épaisseur et en quantité de polyuréthane ainsi que leur couleur, bleue à Rio en 2016 pour améliorer la concentration et le calme des athlètes, rouge de nouveau à Tokyo au Japon pour mieux satisfaire les télévisions.
La piste à Tokyo en 2021 fabriquée sur mesure par l’entreprise italienne Mondo ne fait que 14 mm d’épaisseur. Au-dessous du polyuréthane sont disposés des granulés de caoutchouc en design hexagonal qui ménagent de petites poches d’air. La piste absorbe l’énergie des coureurs et la renvoie avec un effet « trampolino » dans le sens de la marche. Plusieurs coureurs ont dit qu’ils avaient l’impression de « courir sur de l’air » ou de « marcher sur des nuages » sur cette piste très rapide. Il faut dire aussi que les grands fabricants de chaussure de sprint ont fait des efforts. Les chaussures « miracles » ont une semelle élastique avec crampons disposés en hexagone doublée d’une semelle rigide en carbone, des couches de mousse en polyester et polyamide recouverts d’un tissu imper respirant de type « Gore-Tex ».
De plus les fabricants ont fait un réel effort de développement durable et par souci de l’environnement : les mousses de polyamides viennent d’un bioprocédé rendu célèbre par Arkema utilisant des graines de ricin (4) et leur expansion est faite par insufflation d’azote qui les garantit exemptes de CFC, HCFC ou COV (composés organiques volatils). Par ailleurs le principal fabricant a mis en place une chaine de recyclage (5).
La conjonction des chaussures et de la piste apporte un progrès sur les temps de course en sprint et en fond de l’ordre de 2 à 4% ce qui fait dire au roi du sprint Usain Bolt « avec ces chaussures je serais passé au 100 m sous les 9"50 ! ». Car entre 1912 et 2021 pour le 100 m on est passé de la cendrée au Tartan et de 10,6 à 9,58 secondes !
La piste de Paris
Pour les Jeux 2024 à Paris qui vous intéressent au plus haut point, c’est encore le stade de France qui sera doté d’une piste « Mondotrack EB » qui a nécessité 1000 rouleaux de polyéthylène et polyuréthane avec leur support caoutchouté d’épaisseur 15 mm déroulés sur la piste il a fallu 2 800 pots de colle et elle est de couleur violette ! Oui vous avez bien lu : Violette. Comme d’habitude la France se singularise, fini le rouge ou le bleu, c’est le violet, choisi pour apaiser les compétiteurs et peut être les politiques et faire plaisir aux caméramans de télévision. La piste sera en violet clair et les zones de service en violet plus sombre. De plus, obéissant aux tendances de « green washing », le fabricant a incorporé dans la charge minérale des coquilles de moules et d’huitres broyées (soit du calcaire ou carbonate de calcium) ce qui permet de dire qu’il y a pour cette piste au moins 50% de matériaux renouvelables bien mieux qu’à Londres (6). En principe la piste devrait être finie début juin et un premier gala est prévu pour essais le 25 juin.
Certains esprits chagrins ou radicaux avaient émis des réserves sur les granulats de caoutchouc utilisés pour les terrains de sports avec la crainte de libérer des HAP (hydrocarbures aromatiques polycycliques). On peut rappeler que les sprinters n’y passent que quelques secondes et sont donc peu exposés, mais plus sérieusement rappeler surtout que deux réglementations suivies par les fabricants sont impératives et protectrices. Le règlement CLP définit que pour que les granulats de caoutchoucs soient considérés sans danger, ils doivent rester en deçà de certains seuils spécifiques quant à la présence de substances classées dangereuses telles que certains HAP.
Le règlement REACH indique que seuls les granulats de caoutchoucs considérés sans danger sont autorisés pour la fabrication de terrains de sports.
Alors bons jeux, vibrez à Paris ou devant la télévision, la chimie (7) ne sera pas seulement présente sur les revêtements de piste mais sur les sautoirs, les courts, les terrains, les maillots, les prothèses partout pour les jeux olympiques et paralympiques.
Jean-Claude Bernier
Juin 2024
Pour en savoir plus :
(1) Chimie et Sports en cette année Olympique et Paralympique, Conférences du Colloque du 7 février 2024
(2) Les infrastructures de transport : les apports de la chimie dans les projets d’avenir, H. Van Damme, Colloque Chimie et Transports, avril 2013, Fondation de la Maison de la chimie
(3) Optimisation des performances, complexité des systèmes et confrontation aux limites J.-F. Toussaint, La chimie et le sport (EDP Sciences, 2011) isbn : 978-2-7598-0596-9, p. 45
(4) Comment faire des polyamides à partir d’huile de ricin ? Du ricin au Rilsan®, une réaction de polymérisation à la française, J.-P. Foulon, Réactions en un clin d’œil, Mediachimie.org
(5) Les matériaux au service de la performance de la chaussure, A. Lahutte, Conférence Chimie et Sports en cette année Olympique et Paralympique, février 2024, Fondation de la Maison de la Chimie
(6) Un stade plus écologique est-il possible ?, A. Harari, Question du mois, Mediachimie.org
(7) 2023-2024 : Sports et chimie, une sélection de ressources pour découvrir et comprendre pourquoi la chimie occupe une place si importante dans le domaine du sport de haut niveau (Mediachimie.org)
Crédit illustration : Visuel du stade de France / Paris2024.org
Elle offre ses courbes et ses méandres à ceux qui veulent bien la voir le long des quais, du haut de certains monuments mais aussi en amont et en aval de la capitale.
Elle sera reine le 26 juillet car sur plus de 6 km elle accueillera plus de 10 500 athlètes, et offrira un spectacle à des milliers de spectateurs qui sans doute « en prendront plein les Jeux ». Au-delà du 26 juillet, elle sera le théâtre de compétitions de nage en eau libre, de l’épreuve de natation des triathlètes des Jeux Olympiques et Paralympiques de Paris 2024.
Mais tout ceci ne sera possible que si son eau est dépolluée, si les bactéries ont disparu pour rendre à ce fleuve l’honorabilité qui lui revient après les récurrentes promesses faites depuis plus de 20 ans par nos politiques.
La Seine sera sans doute sur le devant de la scène grâce à la chimie et à l’expertise de ces acteurs industriels qui s’intéressent à l’eau. Au-delà des Jeux, ce sujet est primordial, vital, parfois préoccupant car soit nous allons en manquer soit nous allons être confrontés à des zones fluviales ou autres étendues aquatiques polluées par des rejets industriels et humains.
Mediachimie.org s’intéresse à ces sujets depuis de nombreuses années et explore les avancées, les problématiques, les solutions apportées. Laissez-vous guider au fil de l’eau pour découvrir toutes ces ressources et comprendre, réfléchir et prendre conscience si ce n’est déjà le cas de ce sujet ESSENTIEL !
Jean Gomez
Quelques ressources à explorer sur le site www.mediachimie.org :
- L'eau, une ressource indispensable pour la ville, fiche Chimie et… en fiches
- La bataille de l'eau propre, chapitre de La chimie et la sécurité des personnes, des biens, de la santé et de l'environnement (collection Chimie et … Junior)
- L'eau : ses propriétés, ses ressources, sa purification, fiche pédagogique jeu Super Kimy
- H2O, la molécule vedette de l'été, actualité Mediachimie.org (09/2022)
Crédit illustration : Cérémonie d'ouverture, l'embarquement des athlètes, © Paris 2024 - Florian Hulleu
Le dihydrogène H2 est un gaz très léger, insipide et incolore. Mais depuis quelques années en fonction de son origine on lui a collé presque toutes les couleurs de l’arc en ciel ! Noir ou gris s’il est préparé à partir du charbon ou du méthane, vert ou jaune s'il est préparé par électrolyse de l’eau (1) avec une électricité issue des énergies renouvelables ou nucléaire, de gris il devient bleu si on récupère le CO2 lors de sa synthèse. Tout le code des couleurs y était passé jusqu’à ce que plus récemment on lui trouve la couleur blanche originelle ? oui… Puisqu’il s’agit de l’hydrogène natif issu tout seul de notre bonne vieille Terre comme des restes et souvenirs qui lui restent après les condensations des atomes à la suite du Big–Bang.
La première fois que j’ai entendu parler de l’hydrogène « naturel », c’est lors de discussions avec le professeur Armand Lattes lors de nos nombreuses rencontres à la SCF au milieu des années 2000. Il avait eu connaissance d’émanations d’hydrogène en Russie et en Ukraine et, par l’intermédiaire d’un de ses jeunes thésards à Toulouse Viacheslav Zgonnik, prit contact avec un géologue russe V. N. Larin qui était spécialiste du contexte géologique de ces émanations. À l’époque nous pensions (à tort) qu’il s’agissait de l’influence du réchauffement climatique sur le permafrost. Alerté par Armand Lattes l’IFPEN (i) ne dut qu’à la présence d’Hervé Toulhoat (2) de lancer un programme exploratoire qui a abouti à de très sérieuses connaissances scientifiques prolongé par un Groupement de Recherche (GDR) coopératif HydroGeMM sur l’hydrogène du sous-sol considéré au départ comme une joyeuse galéjade toulousaine !
20 ans après, avec l’engouement pour l’énergie décarbonée, les gisements géants d’hydrogène ne font pas que rêver les chercheurs du CNRS et de l ‘IFPEN mais aussi nombre d’entreprises minières dont 40 compagnies multiplient les explorations et forages de par le monde en 2024.
Comment se forme cet hydrogène « natif »
Au moins trois processus ont été identifiés :
- a) dans les fosses océaniques profondes aux endroits où deux plaques continentales se chevauchent des émanations volcaniques ont été vues : des « fumées noires » avec des émanations de sulfures métalliques, de sulfates et d’hydrogène dans un fluide à 300° C , acide à pH 3 et constituant un milieu extrême prébiotique ou des archaebactéries transforment ces sources de soufre, d’oxygène et d’hydrogène en ATP (ii) source énergétique de la vie (3). Sont également vues des émanations de fumées blanches à températures plus basses 60° à 70°C et des excrétions de carbonate de calcium CaCO3, de magnésite principalement constituée de carbonate de magnésium et de silicates (4).
On parle alors en ces domaines de serpentinisation avec des réactions suivantes :
3 Fe2SiO4 + 2 H2O = 2 Fe3O4 + 3 SiO2 + 2 H2
2 Fe3Si2O5(OH)4 + 6 Mg(OH)2 = 2 Mg3Si2O5 (OH)4 + 2 Fe3O4 + 6 H2
(Chrysolite ferreuse) (iii) + Brucite (Mg(OH)2) = Serpentine (iv) + Magnétite (Fe3O4) + dihydrogène
- b) La radioactivité naturelle dans certaines croûtes terrestre peut, par radiolyse, décomposer l’eau
- c) l’oxydo-réduction dans des zones cratoniques
Au début de l’Archéen, période de l’histoire de la Terre comprise entre 4 et 3 milliards d’années, l’océan était dépourvu d’oxygène et contenait du fer ferreux (Fe2+) en solution. Avec l’oxygénation des océans, ce fer ferreux s’est oxydé en fer ferrique (Fe3+) et il s’est déposé sous la forme de couches d’oxydes de fer tels que la magnétite (Fe3O4) et l’hématite (Fe2O3), alternant avec des dépôts d’argiles et de carbonates. Ces dépôts successifs, qui s’expliquent par une sédimentation sous une épaisseur d'eau variable avec une concentration plus ou moins importante d’oxygène, se sont formés au cours du temps, entraînant ainsi la formation d’importants gisements de minerais de fer (5)
Les couches situées à moindre profondeur ont été oxydées par les pluies et les eaux de surfaces contenant de l’oxygène. Par contre celles situées à plus grande profondeur, plusieurs centaines de mètres, baignées par de l’eau anoxique d’un aquifère profond peuvent engendrer un flux d’hydrogène suivant la réaction :2 Fe3O4 + H2O = 3 Fe2O3 + H2
Une exploitation industrielle ?
Les flux d’hydrogène issus des rides médio océaniques et volcans sous-marins à très grande profondeur sont difficilement exploitables. Ces rides dues au mouvement des plaques continentales peuvent aussi s’observer à terre dans certaines régions dans l’Afar (en Éthiopie) ou en Islande par exemple. Des recherches sur la possibilité d’exploitation de l’hydrogène à côté de l’usage des calories en géothermie mériteraient d’être conduites. Par contre le mécanisme d’oxydoréduction par la magnétite ouvre un horizon immense car ces nombreuses zones cratoniques, aires sédimentaires anciennes datant de 2 à 3 milliards d’années, sont nombreuses dans le monde et incitent les compagnies minières exploitant le minerai de fer à aller voir plus en profondeur si des flux d’hydrogène sont décelables.
Le journal du CNRS de décembre 2023 citait la découverte de dihydrogène par le laboratoire de GéoRessources de Nancy lors de forages au-dessous de couches de charbon exploitées dans d’anciennes mines de Lorraine. D’abord menés afin de trouver du méthane, mais surprise, plus on descendait en profondeur plus la teneur en hydrogène dans le méthane augmentait pour atteindre 15% à 1100 m. Des travaux menés avec l’IFPEN et les géologues amènent à penser que par extrapolation la teneur pourrait dépasser 90% à -3000m !
D’où l’enthousiasme des chercheurs qui pensent avoir trouvé en Lorraine un gisement de plus de 40 millions de tonnes d’hydrogène naturel. De la découverte à l’exploitation il y a encore un long chemin. Une seule compagnie au monde, Hydroma au Mali, exploite depuis 4 ans, un puits qui produit de l’hydrogène pur à 96%, à la pression de 4 bars et utilisé pour alimenter une turbine à gaz qui produit de l’électricité localement. Par vision aérienne on a identifié des zones de dépression circulaires de rayon de quelques centaines de mètres où rien ne pousse ; en Russie, en Ukraine, aux Etats unis, au Brésil les géologues les appellent « les ronds de sorcière », de l’hydrogène s’en échappe de façon non constante et non continue mais non négligeable : ces zones sont dans des aires cratoniques.
Une nouvelle source d’énergie décarbonée ?
De nombreuses compagnies minières ou leaders dans l’énergie s’intéressent à ce nouveau paradigme non prévu dans la planification énergétique. C’est que le prix de l’hydrogène gris est en moyenne inférieur à 2$/kg, le vert proche de 6$/kg alors que le blanc revient à 1$/kg.
La compagnie NH2E (v) aux États-Unis a foré un premier puits au Kansas. En France la société 45-8 Energy a obtenu en décembre 2023 l’autorisation de recherche dans les Pyrénées, TBH2 en Aquitaine et plus de 40 compagnies se lancent dans de telles recherches. Car selon un modèle de l’institut d’études géologiques des États-Unis (USGS) de 2022, la captation efficace des réserves mondiales pourrait satisfaire la demande énergétique globale pendant plus de 1000 ans (6).
Revenons sur terre cependant : rien ne garantit que l’hydrogène natif tienne ses promesses, la captation, son stockage, sa distribution poseront les mêmes problèmes que l’hydrogène gris ou vert. Sa compression ou sa liquéfaction consomment plus de la moitié de son potentiel énergétique. Mais les optimistes font remarquer que si on s’était arrêté à la fin du XIXe siècle aux faibles manifestations de présence du pétrole en surface on n’aurait jamais exploité les immenses réserves de l’or noir.
En sera–t-il de même pour l’or blanc ?
Jean-Claude Bernier
Avril 2024
(i) IFP Energies nouvelles
(ii) Adénosine triphosphate
(iii) La chrysolite ferreuse est le silicate de magnésium et de fer II (Mg, Fe) 2 SiO4;
(iv) La serpentine est une famille de minéraux du groupe des silicates. Formule chimique : (Mg,Fe,Ni)3 Si2O5(OH)4
(v) Natural Hydrogen energy https://www.nh2e.com/
Pour en savoir plus
(1) Qu’est-ce que l’hydrogène vert ?, F. Brénon, Question du mois, Mediachimie.org
(2) IFPEN et l’hydrogène naturel, H Toulhouat, L’Actualité Chimique N° 483 (avril 2023) p. 11-12
(3) Les origines de la vie, du minéral aux biomolécules, d'après la conférence de T. Georgelin, Colloque Chimie, aéronautique et espace, novembre 2017, Fondation de la Maison de la Chimie
(4) Hydrates de gaz et hydrogène : ressources de la mer du futur, J.L. Charlou, La chimie et la mer (EDP Sciences, 2009) isbn : 978-2-7598-0426-9, p. 99
(5) Action de l’eau sur le fer, G. Chaudron, C. R. Acad. Sci., 159 (1914) pp. 237-239, gallica.bnf.fr
(6) Le dihydrogène est-il une solution d’avenir pour lutter contre le réchauffement climatique ?, É. Bausson, F. Brénon et G. Roussel, Dossier pédagogique Nathan / Mediachimie (Mediachimie.org)
Crédit illustration : source image rcphotostock /pexels
À J -125, la tenue des 45 000 volontaires des Jeux Olympiques et Paralympiques élaborée par Décathlon a été dévoilée. Ces tenues, puisque plusieurs pièces (chaussures, chaussette, pantalon double fonction, tee-shirts, chapeau, banane, marinière transformable, chapeau, sac) constituent ce bagage vestimentaire, ont été testées par les athlètes et élaborées par le fabricant en répondant aux critères suivants : déperlance, élasticité, résistance, ergonomie.
Cet uniforme des volontaires fortement identifiable allie fonctionnalité et confort. Il est annoncé comme éco-conçu, moderne et modulable. Dans une volonté d’éco-conception et d’éco-responsabilité, l’ensemble de cette panoplie, unisexe, a été réalisée avec une part importante de Made in France.
La chimie, une fois de plus, a œuvré pour proposer des textiles adaptés aux volontaires. Si dans ce cas la quête de performances sportives n’est pas de mise, il n’empêche que les textiles proposés répondent en tous points à ceux des sportifs de haut niveau et donc aux contraintes de température extérieure, de température du corps et aux critères fixés ci-dessus par le COJO.
Pour en savoir plus sur le sujet consultez nos articles :
- Des textiles pour sportifs. Apport de la chimie pour améliorer confort et performances
- La chimie dans le sport : chimie et matériaux
- Combinaisons en néoprène® calcaire ou en néoprène® aux coquilles d’huîtres : renouvelables ou non ? (Question du Mois)
- Sport et chimie (liste de ressources)
Alors ouvrons grands les jeux !
Jean Gomez
Crédit illustration : © Paris 2024 x Decathlon
J’avais dans un premier temps voulu intituler cet édito une chimie pour s’envoyer en l’air mais des interprétations ambiguës pouvaient complétement dénaturer le propos. Il s’agit bien ici en 2024 de parler des épreuves olympiques qui permettent à certains athlètes de s’élever loin du sol et de vaincre la pesanteur pour établir un nouveau record. Deux épreuves retiennent notre attention, l’une discipline olympique depuis 1896 lorsque le baron Pierre de Coubertin l’introduit dans les premiers Jeux olympiques de l’ère moderne, le saut à la perche, l’autre plus récente intégrée aux Jeux de Sydney en 2000 est la version gymnastique d’un jeu de jardin, le trampoline.
Le saut à la perche
Utilisé dans la Grèce antique comme moyen pour franchir les ruisseaux à l’aide de longues tiges de bois on en retrouve trace dans des jeux irlandais vers 550 av. J.-C. sous forme de saut en longueur. Au XVIIIe siècle aux Pays-Bas, le Fierljeppen est un jeu consistant à franchir une rivière avec une longue perche de plusieurs mètres. Ce n’est que fin du XIXe siècle que les sauts en longueur laissent la place aux sauts en hauteur avec une impulsion du coureur vers le haut et non plus horizontale. Intégré dans les championnats anglo-saxons les règles s’imposent progressivement et en 1892 les championnats de France couronnent un stadiste avec un saut à 2,41 m. En 1896 c’est un Américain William Hoyt qui remporte la médaille d’or des premiers Jeux avec un saut à 3,30 m.
Commence alors la course aux matériaux pour la perche. Au départ perches en bois rigides peu flexibles puis en Bambou un matériau composite naturel (1) qui plie sans nécessairement se rompre. Viennent ensuite des alliages d’aluminium et de cuivre dont les coefficients d’élasticité ont été optimisés et enfin des perches en composites avec des nappes de fibres de verre cylindriques bien collées par des polyesters et mieux encore des fibres de carbone tressées et enserrées dans un polymère (2). Ces dernières perches peuvent se plier largement et se déplier en lançant l’athlète vers le haut. C’est très grossièrement un réservoir d’énergie car il s’agit bien dans cette compétition d’accumuler et de restituer le maximum d’énergie.
Pour un athlète de 80 kg et pour sauter à 5 m il faut 80 x 10 x 5 = 4000 J avec une seule impulsion. Un athlète capable de développer 1,3 kW en 0,3 seconde (saut à pieds joints) n’atteindra que 70 cm. Il faut donc une course d’élan qui va donner une énergie cinétique Ec = ½ mv2, une énergie potentielle de l’athlète capable avec les bras et les muscles des abdominaux de se retourner et de pointer vers la barre, Ep, et bien sûr l’énergie de flexion restituée par la perche vers le haut Ef.
L’équation totale est alors Etotale = Ec + Ep + Ef qui permet en une seconde d’atteindre la puissance (i) nécessaire pour sauter 5 m et plus. La perche en composite absorbe et restitue l’énergie comme un arc qui a été tendu et qui va lancer une flèche vers la cible. Les perches en composites doivent allier rigidité et flexibilité, elles ont une longueur comprise entre 5 et 6 m et pèse environ 20 kg (3). C’est pourquoi on voit au début de la course d’élan le sauteur porter la perche verticalement et l’abaisser progressivement avant de l’enfoncer dans le butoir et de donner son impulsion vers le haut. C’est un moment crucial car la propulsion doit être dirigée vers le haut et vers l’avant sinon le sauteur s’expose à un « retour piste » très dangereux car il retombe sur la piste et non sur les matelas de mousse en polyester de l’autre côté du sautoir. Discipline très exigeante, ce n’est que depuis 2010 que les recordmen tutoient les 6 mètres ; d’abord l’ukrainien Sergueï Bubka, puis le français Renaud Lavillenie et depuis 2023 Le Suédois Armand Duplantis à 6,23 m. Y a-t-il encore des degrés de progression ? Seuls l’entrainement et la recherche en matériaux nouveaux nous l’apprendront.
Le trampoline
C’est dans les années 1930 qu’un jeune américain Georges Nissen, en voyant au cirque les trapézistes se laisser tomber dans un filet, a l’idée de fabriquer un appareil qui leur permettrait de rebondir avec un tissu accroché à un cadre rigide par des ressorts. Avec trois amis il fait une tournée aux États-Unis et au Mexique pour populariser son invention qui est baptisée « el trampolin » en espagnol. C’est en 1941 qu’il crée la première société de fabrication des trampolines qui sont utilisés pour l’entrainement des pilotes, et c’est après 1950 que des épreuves de trampoline sont intégrées dans les compétitions universitaires d’athlétisme. Les premiers championnats du monde voient le jour en 1964 et en 1980 le trampoline est intégré comme sport de démonstration dans les Jeux olympiques et ne devient sport olympique qu’en 2000 aux Jeux de Sydney.
Le trampoline de compétition est constitué d’un cadre métallique de 4x2 m situé à 1,15 m du sol et entouré de matelas de mousse de polyester pour la sécurité des gymnases. Le tapis de sol est en polypropylène avec des mailles très serrées (260 g/m2) (4) accroché par des œillets métalliques au cadre par 120 ressorts en acier dur à teneur en carbone supérieure à 0,45% et souvent galvanisés (5). Les athlètes par impulsion sautent sur le tapis de saut qui avec les ressorts leur restituent de l’énergie et peut les propulser à chaque impulsion à plus de huit mètres en hauteur. Les acrobaties et figures dans les airs, sauts périlleux, retournés, rouleaux, etc. sont appréciés par un jury qui donne une note technique et artistique. Les champions olympiques 2020 sont Ie biélorusse Ivan Litvinovich et chez les femmes la chinoise Zhu Xueying. En 2024 la compétition doit se dérouler à l’Arena Bercy le 2 août. En fait c’est plutôt l’activité de loisirs qui a entrainé les compétitions. On trouve pour quelques centaines d’euros des trampolines de jardin de formes carrée ou circulaire avec un tapis de saut protégé par des coussins et un filet de protection pour la sécurité des enfants. Les salles de sport ont aussi installé des « jumping fitness » où il s’agit de faire des exercices de sport sur trampoline, une séance de 15 minutes remplaçant le jogging.
Dans ces deux sports, le saut à la perche et le trampoline, les forces musculaires alliées à la technologie des matériaux sont une belle démonstration de l’énergie déployée, conservée et amplifiée, non seulement pour atteindre des records mais pour décrire des trajectoires et sauts de toute beauté.
Jean-Claude Bernier
janvier 2024
(i) La puissance est l’énergie libérée pendant un certain temps.
Pour en savoir plus
(1) Les matériaux composites dans le sport,Y. Rémond et J.-F. Caron, in La chimie et le sport (EDP Sciences, 2011) isbn : 978-2-7598-0596-9
(2) Les matériaux de la performance, C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, in La chimie dans le sport, collection Chimie et... Junior (EDP Sciences, Fondation de la Maison de la Chimie, 2014), isbn : 978-2-7598-1238-7
(3) Les matériaux dans le sport, (r) évolutionnaires !, P. Bray, O. Garreau et J.-C. Bernier, Fiche Chimie et... en fiches (Mediachimie.org)
(4) Les textiles et les vêtements pour le sport, C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, in La chimie dans le sport, collection Chimie et... Junior (EDP Sciences, Fondation de la Maison de la Chimie, 2014), isbn : 978-2-7598-1238-7
(5) Corrosion des métaux et protection, D. Soissons, Dossier pédagogique Nathan / Mediachimie (Mediachimie.org)
Crédits illustrations : Perche par andreas N / Pixabay ; Trampoline, Finale Jeux olympiques de la jeunesse d'été de 2018, Martin Rulsch, CC BY-SA 4.0, Wikimedia Commons