| Eau et innovation
Rubrique(s) : Éditorial
Quoi de plus simple et anonyme que la molécule H2O, elle est pourtant vitale (1). Notre corps en contient plus de 65% soit 45 litres si vous pesez 70 kg. Sur notre bonne vieille planète l’eau est essentiellement sous forme d’eau salée, 97,5% (mer et océans), et l’eau douce ne représente donc que 2,5%. Mais seulement 30% de cette eau douce constitue les nappes phréatiques et les rivières, le reste étant sous forme de glace ou de neige.
En France ce sont des milliers de rivières, fleuves, cours d’eau et ruisseaux qui serpentent sur 500 000 km et sous nos pieds 2000 milliards de m3 sont stockés dans nos nappes phréatiques. Sans eau il n’y a pas de vie et on sait quel rôle essentiel elle joue dans notre alimentation, nos sources d’énergie (2) et notre industrie. Rien d’étonnant alors que les épisodes de sécheresses, de cumuls de précipitations, de pollutions, de pressions agricoles et urbaines trouvent de larges échos dans les médias et l’opinion. Pour répondre à ces problèmes y a t-il encore de la recherche sur les technologies liées à l’eau ? Essayons par trois exemples d’esquisser une réponse.
La lutte contre les espèces exotiques envahissantes
C’est un véritable fléau à l’échelle mondiale ! Ces espèces étouffent la vie aquatique, gênent l’écoulement dans les rivières et canalisations et sont sources de dégâts à l’environnement et de pertes économiques. Claude Grison et son laboratoire montpelliérain en étudiant des espèces comme la laitue de mer et la Jussie d’eau ont découvert qu’une bonne partie de la plante était au contraire capable de dépolluer l’eau (3). Transformées en fine poudre, elles sont des filtres très efficaces pour récupérer des métaux comme le palladium, le manganèse, le zinc et le nickel. Elles peuvent aussi être utilisées pour la récupération de polluants comme les herbicides.
La valorisation de ces découvertes est réalisée par une startup qui va transformer ces poudres gorgées de microparticules métalliques comme catalyseurs pour diverses réactions chimiques industrielles en remplacement de ceux issus des extractions minières. L’équipe de Montpellier espère avec ses partenaires industriels monter en puissance ces solutions de dépollution grâce à ces plantes envahissantes dont la croissance risque d’être accélérée par le changement climatique.
La pollution chimique organique
La chimie analytique a fait d’énormes progrès depuis 20 ans. Les procédés de séparation, d’extraction, et de caractérisation ; chromatographie inverse ou d’exclusion, spectrographies de masse… permettent d’identifier les polluants à des concentration très faibles comme le ppb (microgramme par kilo) et même moins. On est donc capable de caractériser les micropolluants (4) dans l’eau. Hélène Budzinski et son laboratoire de Bordeaux, l’EPOC, savent caractériser des milliers de molécules organiques. Mais d’après elle, alors qu’il y en a des millions, un enjeu de taille se dresse pour les chercheurs en chimie analytique : comment analyser ce qui n’est pas encore connu ! Ce projet novateur se fait en collaboration avec la régie de l’eau de Bordeaux (5). Il va demander de grands progrès méthodologiques de séparation et d’identification pour anticiper des actions sur des polluants potentiellement toxiques dont la recherche et l’analyse ne sont pas encore réglementées. Le challenge va aussi plus loin car on peut observer des effets sur la santé, la faune, l’environnement sans identifier les polluants et l’inverse est aussi possible. Un pesticide n’est peut-être pas en cause puisque l’effet escompté n’est pas constaté mais le mélange avec d’autres herbicides par un effet cocktail peut être impactant. S’y ajoutent des conditions environnementales, pH, température, turbidité… qui peuvent intervenir. Le projet de recherche mené par le CNRS, la régie de l’eau et l’office français de la biodiversité va essayer de caractériser par la chimie couplée à des bio-essais l’impact de rejets dans un affluent de la Garonne.
La prédiction des ressources et de la consommation
La recherche d’une meilleure qualité de l’eau au robinet c’est bien, mais la disponibilité de la ressource, son usage, sont aussi pour les collectivités locales une préoccupation constante (6). On l’a vu cet été lors du stress hydrique de certains départements et villes du sud de la France. C’est ainsi qu’un laboratoire de Mathématique du CNRS à Nice travaille avec la régie Eau Azur sur un projet complexe. Comment modéliser la prévision des demandes en eau des usagers au moins trois semaines à l’avance et aussi en amont prévoir le niveau des nappes phréatiques sur plusieurs mois.
Un premier modèle s’appuyant sur des méthodes statistiques classiques et sur un traitement des données par intelligence artificielle fournit des prévisions à six jours encore loin des six mois ! Mais il y a un réel intérêt scientifique à développer un outil mathématique de pointe pour traiter un sujet concret et utile. Le problème est bien sûr les prédictions météorologiques aléatoires qui influencent les niveaux des nappes. Mais la prédiction du stock disponible et du prélèvement permettra d’arrêter ici les pompes, là de les conserver, sans risques de pannes et des couts associés à ces défaillances et aux réparations. L’objectif pour les collectivités locales est de mieux gérer l’eau actuelle et future, prévoir la demande et dimensionner de nouveaux réservoirs si nécessaire.
En France la recherche dans la filière eau rassemble plus de 200 laboratoires et près de 3000 personnes à travers le CNRS, le BRGM, l’INRAE et plusieurs universités (7). Il s’agit d’accroître les connaissances sur les polluants, leur détection et leur élimination, les risques naturels, inondations et sécheresse, la valorisation des eaux usées, les réseaux de distribution intelligents, les nouveaux matériaux d’infrastructure de canalisation et les accès aux ressources. Le PEPR (Programme et équipements prioritaires de recherche) « One water - eau bien commun » financé sur 10 ans accélère la recherche académique et industrielle en ce domaine. Il sera décrypté lors du colloque « chimie et eau » du 6 novembre prochain.
Jean-Claude Bernier
Septembre 2024
Pour en savoir plus
(1) L’eau, une ressource essentielle à la vie, D. Soissons, dossier Nathan / Fondation de la Maison de la Chimie (Mediachimie.org)
(2) L’eau et l’énergie sont-elles dépendantes ?, A. Charles, N. Baffier et J.-C. Bernier, fiche Chimie et… cycle 4 (Mediachimie.org) et Pourquoi économiser l’eau potable est-il aussi source d’économie d’énergie ? F. Brénon et O. Garreau, Question du mois (Mediachimie.org)
(3) Zoom sur la phytoremédiation des métaux lourds, J.P. Foulon, Zoom sur… (Mediachimie.org)
(4) L’eau, sa purification et les micropolluants, M. Coquery et S. Martin Rue, in Chimie et nature (EDP Sciences) 2012, isbn : 978-2-7598-0754-3
(5) La bataille de l’eau propre, C. Agouridas, J.-C. Bernier, D. Olivier et P. Rigny, in La chimie et la sécurité des personnes, des biens, de la santé et de l'environnement, collection Chimie et... Junior, EDP Sciences, Fondation de la Maison de la Chimie
(6) L’eau ressource indispensable pour la ville, A. Charles, A.Harari et J.-C. Bernier, fiche Chimie et… cycle 4 (Mediachimie.org)
(7) Les chimistes dans les métiers de l’eau, F. Brénon et G. Roussel, série Les chimistes dans… (Mediachimie.org)
Crédits :
- Figure : répartition de l'eau sur Terre. DR.
- Illustration : Goutte d’eau, José Manuel Suárez/Wikimedia Commons CC BY 2.0