On se rappelle que pour les ajouts dans l’essence (SP95-E10) la production d’alcool à partir du sucre de la betterave ou de l’amidon du blé avait essuyé des critiques (1). En effet, non seulement l’efficacité énergétique et le bilan CO2 n’étaient pas au rendez-vous, mais cette production était en concurrence avec les cultures vivrières et accusée de faire augmenter le prix des céréales.
C’est pourquoi des recherches intensives se sont développées pour obtenir l’éthanol (2) à partir de la biomasse « lignocellulosique » (3) : la paille, le bois les bagasses des végétaux. À côté de la voie thermochimique coûteuse en énergie, débouche la voie biochimique (4). Il fallait trouver les enzymes et bactéries capables d’extraire les sucres de la cellulose (5), et par fermentation obtenir l’alcool. Plusieurs groupes aux États-Unis, en Europe, en France font la course pour trouver le bon procédé industriel (6). Le challenge est d’améliorer par génie génétique un cocktail d’enzymes dérivés du Trichoderma reesi un champignon qui lors de la guerre du Pacifique Sud en 1944-1945 dévorait les toiles de tentes des Marines américains.
Il faut d’abord séparer la cellulose, l’hémicellulose et la lignine par un procédé mécanique ou chimique. Puis les enzymes à environ 50°C attaquent la cellulose et produisent deux sucres, l’un en C5 le xylose et l’autre en C6 le glucose qui par fermentation vont donner l’éthanol.
Dupont paraît le premier à se lancer au stade industriel (7), la compagnie vient d’inaugurer aux États-Unis la plus grande usine d’éthanol cellulosique dans l’Iowa. Elle produira 115 millions de litres par an à partir de 375 000 t. de tiges et feuilles de maïs ramassées par 500 agriculteurs dans un rayon de 50 km. Le cocktail « Accelerase® 1500 » transforme 80% de la biomasse en 80 heures et la fermentation pour obtenir des solutions à 30 % d’alcool exige le même temps.
En France, le projet « Futurol » lancé en 2008 avec 11 partenaires dont l’INRA et l’IFPEN est aussi arrivé à un « cocktail enzymatique » de première force et un procédé couverts par plus de 20 brevets. Une usine pilote près de Reims fournit déjà 180 000 litres et préfigure une unité industrielle de 180 millions de litres par an d’ici 2018 (8). La société de biotechnologie Deinove avec une souche enzymatique Deinol vient de réussir une étape préindustrielle en Finlande et s’attache à trouver une solution de production compétitive d’ici 2018 (8).
Le bioethanol 2G de source lignocellulosique (9) doit encore démontrer sa rentabilité économique face au prix très bas du baril de pétrole, mais avec le 3G (10) c’est vraiment à long terme l’avenir pour l’environnement.
Jean-Claude Bernier
décembre 2015
Quelques ressources pour en savoir plus :
(1) Des biocarburants pas si verts que ça
(2) L’éthanol (Produit du jour de la Société Chimique de France)
(3) Le végétal, un relais pour le pétrole ?
(4) Valorisation biologique des agro-ressources
(5) La cellulose (Produit du jour de la Société Chimique de France)
(6) Les enjeux de la R&D en chimie pour le développement des carburants et des biocarburants
(7) La chimie au cœur des énergies d’avenir
(8) Chimie du végétal, fer de lance de la chimie durable
(9) Biomasse : la matière première renouvelable de l’avenir
(10) Les algocarburants, de nouveaux diesels miracles ?
Après les attentats abominables qui ont entaché le 13 novembre dernier et révulsé tous les Français, nous avons entendu les hautes autorités de l’État nous mettre en garde sur l’éventualité d’une guerre chimique. Qu’est-ce que cela signifie ? C’est la dispersion dans des endroits clos de gaz toxiques susceptibles d’altérer gravement la santé des personnes présentes et même de les empoisonner mortellement.
Quels sont ces gaz chimiques ? La célébration du centenaire de la grande guerre (1) a jeté quelques lumières sur ces gaz dont on rappelle la première attaque en avril 1915 par le chlore (2).
Au cours du conflit 1914-1918, les gaz utilisés ont été de plusieurs types :
- les suffocants tels le chlore (Cl2) ou le phosgène (COCl2) qui détruisent les alvéoles des voies respiratoires ;
- les sternutatoires dérivés de l’arsine non mortels mais provoquant éternuements et nausées ;
- les vésicants très agressifs comme l’ypérite ou gaz moutarde S(CH2CH2Cl)2 qui par contact produisent des brûlures, des aveuglements et attaquent les poumons (3).
Les quantités à mettre en œuvre ou à déverser par de nombreux fûts ou des obus volumineux rendent difficile leur utilisation en pleine ville par des terroristes, sauf par attaque aérienne qui aurait échappé à la sécurité militaire aérienne.
Plus dangereux sont les organophosphorés dérivé de l’isopropanol comme le Tabun ou le Sarin (4) qui à concentration modérée par inhalation entrainent la paralysie respiratoire. C’est ce dernier qui fut utilisé en 1995 dans le métro de Tokyo par des terroristes de la secte Aun Shinrikyo qui a coûté la vie à 12 personnes et intoxiqué momentanément plusieurs milliers d’usagers. L’antidote principal est l’atropine par voie intraveineuse. C’est probablement la menace la plus dangereuse avec ces gaz innervants comme le VX, encore plus mortel. Cependant, leur synthèse reste assez complexe et dangereuse, difficile à réaliser sans équipements spécialisés et des chimistes professionnels. Par ailleurs, les méthodes nanotechnologiques (5) de détection de traces de ces dérivés (6) et d’explosifs sont de plus en plus perfectionnées (7) et à la disposition de la police scientifique (8).
Jean-Claude Bernier
novembre 2015
Quelques ressources pour en savoir plus :
(1) 1914-1918 : la guerre chimique
(2) Berthollet, le pharmacien Curaudau et l’identification du chlore
(3) Il y a cent ans : la guerre chimique
(4) De la difficulté d’éliminer les « armes chimiques » de Syrie
(5) Les nouvelles techniques d’investigation des explosifs
(6) La chimie au service de la sécurité de nos concitoyens
(7) Déjouer le terrorisme chimique : l’apport des nanotechnologies et des détecteurs de gaz toxiques
(8) La police scientifique
Un match Chine, Airbus et Boeing ! La Chine vient de dévoiler son ambition aéronautique. Un nouvel appareil le C 919 long de 39 mètres capable d’emporter 180 passagers sur près de 4000 km vient d’être dévoilé sur le site de l’usine de Shanghaï devant plusieurs milliers d’officiels et d’ingénieurs chinois. Dès 2016 il commencera son programme d’essais qui devra montrer que les vols se feront en toute sécurité afin de recevoir son certificat d’exploitation internationale à l’horizon 2018.
Avec cet avion, la Chine montre qu’elle veut produire, comme l’Europe et les Etats-Unis, ses propres avions commerciaux et devenir un acteur majeur du transport aérien. Le C 919 se positionne comme un moyen-courrier produit par la COMAC (Commercial Aircraft Corporation of China) dans un marché où Airbus augmente la cadence de production des A 320 compte-tenu du carnet de commandes bouclé pour 7 ans, comme celui de Boeing !
Le fuselage, où dominent les composites (1), et les ailes en aluminium (2) sont conçus et fabriqués en Chine. Une partie des autres éléments est achetée aux meilleurs sous-traitants qui fournissent déjà Airbus ou Boeing. Les moteurs par exemple (3) sont produits par CFM International, coentreprise franco-américaine entre l’américain General Electric et le français Safran, les systèmes électriques par Honeywell (4) et le système de recyclage des eaux usées par le français Zodiac–Aerospace (5) (6). Les trains d’atterrissages sont suisses mais les freins en carbone-carbone sont français (7). Il est bon de rappeler que le transport aérien, qui se développe notamment en Chine, demandera plus de 12 000 avions d’ici 2035 et que ce marché dépend beaucoup de la chimie et de ses innovations (8), bien sûr avec les matériaux mais aussi, ne serait-ce que pour éviter les problèmes électriques, avec les progrès de l’électrochimie (9) ou, pour diminuer l’empreinte carbone, avec les nouveaux carburants biosourcés tels que le biokérosène (10).
Jean-Claude Bernier
novembre 2015
Quelques ressources pour en savoir plus :
1) Matériaux composites à matrices polymères
2) Les alliages d’aluminium pour l’allègement des structures dans l’aéronautique et la carrosserie automobile
3) La combustion et les défis de la propulsion aéronautique et spatiale
4) Énergie en batterie. Des batteries pour la mobilité électrique
5) L’eau : ses propriétés, ses ressources, sa purification
6) L’eau, sa purification et les micropolluants
7) Les composites carbone/carbone
8) La chimie donne des ailes
9) Lithium–ion : de nouvelles batteries antiaériennes ?
10) Les bio-carburants de 2e génération, le projet Syndièse
On peut regretter que le prix Nobel de chimie 2015 soit très biologique, mais il faut alors se féliciter que celui de médecine soit très chimique. L’irlandais William Campbell et le japonais Satoshi Omura sont récompensés pour la découverte de l’avermectine, molécule base du traitement de l’onchocercose ou cécité des rivières transmise par une petite mouche responsable de plus de 500 000 cas de cécité en Afrique. Le japonais Satoshi Omura a étudié les propriétés antibactériennes de souches bactériennes dans le sol, il en a sélectionné une cinquantaine et c’est à partir de celles-ci que William Campbell et la société Merck ont découvert Streptomyces avermitilis très efficace contre les parasites d’animaux. La chinoise Youyou Tu, elle, a passé au crible 2000 herbes utilisées par la médecine traditionnelle chinoise, et, en étudiant particulièrement l’Artemisia annua, elle a identifié son principe actif, l’artemisinine. Première scientifique chinoise de l’académie de médecine traditionnelle à être couronnée, elle a démontré l’efficacité de cette molécule contre le plasmodium. C’était arrivé à point nommé pour lutter contre le paludisme alors que les traitements antipaludéens rencontraient de plus en plus de résistance dans les années 70-80.
Ces découvertes à partir de plantes (1) ou de microorganismes inspirées parfois par la médecine traditionnelle (2) dans une démarche « ethnopharmacologique » n’est pas nouvelle. Rappelons que l’action antipyrétique de l’acide salicylique (aspirine) (3) a été découverte 400 ans avant J.-C. avec les décoctions de feuilles de saule. Plus près de nous, de nouveaux anticancéreux ont été trouvés : le navelbine grâce à la pervenche de Madagascar (4) et le taxotère grâce aux aiguilles d’if (5) (6). Mais l’extraction de ces principes actifs à partir de ressources cultivées ne suffit généralement pas à couvrir les besoins de millions de malades. Il faut alors passer par la synthèse chimique (7) et c’est la chimie thérapeutique (8) qui doit en recherche trouver les réactions multi–étapes et développer le procédé industriel de fabrication. C’est le cas pour ces Nobel de médecine.
L’avermectine, commercialisée dès 1981, est fournie gratuitement par la société Merck pour permettre les campagnes de traitement en Afrique devant l’énorme problème de cécités engendrées par l’onchocercose. Pour l’artémisinine, la culture et la production à partir de l’armoise (artemisia annua) était insuffisante face aux épidémies de paludisme avec 200 millions de cas et 500 000 décès par an. C’est la société Sanofi qui à partir de levures génétiquement modifiées a préparé l’acide artémisinique qui par catalyse et photo–oxydation dans une réaction très complexe donne l’artémisinine. Ce sont 50 à 80 tonnes fabriquées en Italie qui sont mises sur le marché à prix coûtant. Sanofi a été récompensé pour cette opération en 2012 par le prix Pierre Potier de la fondation de la Maison de la Chimie, créé en 2006 par le Ministère de l’Economie, des Finances et de l’Industrie en partenariat avec la FFC et l’UIC (9).
Jean-Claude Bernier
octobre 2015
Quelques ressources pour en savoir plus :
1) La nature au labo : la phytochimie
2) La nature pour inspirer le chimiste : substances naturelles, phytochimie et chimie médicinale
3) L’aspirine (Produit du jour de la Société Chimique de France)
4) Un exemple de médicament extrait d’une substance naturelle : la pervenche de Madagascar
5) Taxol et taxotère (Produit du jour de la Société Chimique de France)
6) De l’if à la pervenche : les plantes qui soignent
7) De la conception du médicament à son développement : l’indispensable chimie
8) La chimie thérapeutique : de la biologie chimique à la découverte de nouveaux médicaments
9) Sanofi - Prix Pierre Potier 2012 (trophée) (vidéo 5:36)