L’accident mortel de Christophe de Margerie, patron de TOTAL, dont le dynamisme et le charisme étaient appréciés, jette sous les feux de l’actualité cette grande société pétrolière et gazière, la cinquième du monde (1). Les médias spécialisés ne manqueront pas de rappeler la stratégie de TOTAL sous cette présidence remarquable, qui relançait l’exploration et diversifiait les orientations énergétiques. Ce qu’on ne dit pas souvent, c’est que ce grand groupe pétrolier est aussi un groupe chimique.
On peut déjà citer la très belle requalification de la plateforme de Lacq qui arrêtait sa production au réseau gazier en 2013 : TOTAL avec les collectivités territoriales d’Aquitaine a su relancer la chimie et garder 8000 emplois sur le site. De même sur la nouvelle orientation de Carling dans la Moselle vers les nouvelles résines (2).
Les filiales chimiques sont connues :
- Hutchinson, spécialiste de la transformation des élastomères (3), du caoutchouc et des polymères techniques pour l’isolation et le transfert des fluides;
- Bostik, qui fabrique des colles sur mesure (4) pour l’étanchéité, la construction et les applications grand public ;
- Atotech, qui est leader mondial des produits pour les traitements de surface et la fabrication des semi-conducteurs et des circuits imprimés (5).
TOTAL, ses sociétés de chimie et d’autres filiales en chimie de spécialités fournissent le marché de l’automobile, les constructions électriques et aéronautiques, les peintures (6) et les composants électriques dans plus de 60 pays.
Dans ces entreprises, plus de 400 métiers co-existent, depuis les géologues et ingénieurs forages jusqu’aux ingénieurs de recherche et de production (7) (8) en chimie mais aussi les ingénieurs systèmes et commerciaux.
Les nouvelles orientations proposées par Christophe de Margerie se sont traduites par le développement du photovoltaïque (9) et le rachat de Sunpower. De même l’implication dans les biotechnologies et la thermochimie pour l’exploitation de la biomasse (10) a entrainé de forts investissements dans les procédés BTL (Biomass To Liquid), avec des pilotes en fonctionnement comme BioTfuel et futurol Amyris pour les biocarburants de 2e génération. Car ce patron responsable disait « demain se fait aujourd’hui… comme aujourd’hui s’est fabriqué hier » et prévoyait la chimie renouvelable qui à terme compensera l’épuisement inéluctable des ressources pétrolières.
Jean-Claude Bernier
octobre 2014
Quelques ressources pour en savoir plus :
(1) Pétrole et essences commerciales
(2) Les matériaux composites à matrices polymères
(3) Les élastomères thermoplastiques (ETP) fluorés : synthèse, propriétés et applications
(4) Une colle qui rallonge la vie des tablettes et smartphones
(5) La chimie au cœur des nanotransistors (video, 46:12)
(6) La chimie crée sa couleur... sur la palette du peintre
(7) Ingénieur de production
(8) Opérateur de production / Conducteur d’appareil
(9) La solution photovoltaïque (vidéo 3:00)
(10) Le végétal, un relais pour le pétrole ?
Le prix Nobel de Physique 2014 récompense trois chimistes des matériaux (1) : Isamu Akasaki, Hiroshi Amano de l’université de Nagoya et Shuji Nakamura, aujourd’hui professeur à Santa Barbara en Californie, mais qui était au Japon dans les années 1990 ingénieur dans une petite entreprise chimique de Tokushima, Nichia Chemicals.
Les travaux de ces trois chercheurs concernent la découverte en 1993 et le développement pour la commercialisation de la diode électroluminescente (LED) bleue.
Le principe de la LED (Light-Emitting Diode) (2) est assez simple. Certains semi-conducteurs parcourus par un courant électrique émettent de la lumière dont la fréquence, et donc la couleur (3), est intimement liée au gap d’énergie de ce semi-conducteur (4).
Les premières LED à base d’arséniure de gallium (AsGa ou Al GaAs) émettaient d’abord dans l’infrarouge puis dans le rouge. En ajoutant du phosphore (GaAsP) on émet dans le jaune, et avec le nitrure de Gallium (GaN) l’émission est de couleur verte (5). Bien que sachant que le carbure de silicium (SiC) difficile synthétiser à haute température pouvait dans certaines conditions émettre dans le bleu, les chimistes et physiciens se sont cassé les dents pendant 30 ans sur cette couleur. Et pourtant la quête de la reconstitution de la lumière blanche (rouge + vert + bleu) et la mise au point d’un laser bleu émettant à faible longueur d’onde pour la lecture de CD et DVD (6) aux stockages augmentés (films) étaient des objectifs scientifiques et économiques super motivants.
C’est ce trio de chercheurs japonais aujourd’hui récompensés qui obtint les premiers la LED bleue avec le semi-conducteur nitrure de gallium indium (InGaN). Très vite après 1995, le marché des LED s’intensifie. La miniaturisation de ces composants et leur très faible consommation d’énergie lui ouvrent l’éclairage domestique, industriel et urbain, les lampes à LED, les télécommandes infrarouge, le rétro-éclairage des écrans plats (7), les lasers pour les platines CD et DVD (Blu-ray)…
Le jury Nobel a voulu par ce prix souligner aussi l’importance de la recherche qui induit une rupture technologique, celle de l’éclairage, en ajoutant que si le 20e siècle a été celui des lampes à incandescence, le 21e siècle sera éclairé aux LED. C’est un avis un peu risqué, compte tenu des ressources mondiales limitées en indium et gallium (8), et c’est aussi faire fi de l’imagination des chimistes et physiciens qui ont mis au point les OLED ou LED organiques (9). Déjà intégrés dans les écrans plats avec une meilleure définition que les écrans LCD, la multiplicité des polymères greffés et la richesse des molécules de coordination vont apporter une palette de couleurs et une consommation d’énergie encore abaissée qui augurent bien de nouvelles surprises de l’électroluminescence.
Jean-Claude Bernier
octobre 2014
Quelques ressources pour en savoir plus :
(1) Ingénieur chimie des matériaux - Un métier de l'automobile
(2) Les multiples contributions de la chimie dans la conception des tablettes et des Smartphones (vidéo 19:00)
(3) La chimie crée sa couleur… sur la palette du peintre
(4) Le soleil comme source d'énergie - Le photovoltaïque
(5) Produits du jour de la Société Chimique de France
(6) La faible longévité des supports d’information numérique : un défi technologique (vidéo 26:37)
(7) Les matériaux avancés, moteurs de l’innovation en électronique (vidéo, 28:33)
(8) Faire du déchet une ressource (vidéo, 22:47)
(9) Les diodes électroluminescentes organiques : des sources « plates » de lumières (vidéo, 29:25)
Le salon de l’auto ouvre ses portes à Paris. Seront en vedette, comme d’habitude, les nouveaux modèles et les concept-cars des constructeurs. Mais les stars cette année seront aussi les prototypes consommant moins de 2 L/100 km et les nombreux modèles de véhicules hybrides de toutes marques. Sait-on que sans la chimie, jamais, ces autos frugales, économes en énergie et peu polluantes en émission de CO2 n’auraient vu le jour ?
Depuis longtemps dans l’automobile, la chimie est présente (1). Les plastiques, les revêtements anticorrosion, les peintures, les pots catalytiques et antiparticules (2) sont issus de la recherche en chimie. Il est jusqu’aux carburants issus du pétrole, qui peuvent être remplacés par les biocarburants tels que l’éthanol ou les esters d’huile végétale (3) issus de la chimie végétale (4).
Mais la révolution qui est en marche avec les véhicules électriques ou hybrides à assistance électrique fait largement appel à la chimie. Des plateformes allégées en aluminium (5), des coques et carrosseries en composite fibres de carbone (6), des batteries ion–lithium qui stockent l’énergie (7) et des moteurs puissants et légers avec des aimants à base de terre rare (8), sans oublier des pneus performants avec une faible résistance au roulement (9). Tous ces composants essentiels pour la voiture de demain viennent de la recherche et du développement en chimie des matériaux (10).
La très sérieuse Fédération Internationale de l’Automobile (FIA) vient de comprendre cette (r)évolution. Elle vient de créer, à côté du championnat de F1, le championnat de FE (E comme électrique) dont la première course qui a opposé ces nouveaux bolides dotés de batteries ion polymère de 28 Kwh, vient de se dérouler à Pékin le 13 septembre.
Le véhicule électrique n’est plus un mirage. Avec les constructeurs, avec la chimie prenez ce virage ! (11)
Jean-Claude Bernier
octobre 2014
Quelques ressources pour en savoir plus :
(1) L’industrie chimique au service de l’automobile
(2) La catalyse au service de l’automobile
(3) Les enjeux de la R&D en chimie pour le domaine des carburants et des biocarburants
(4) Un exemple d’énergie renouvelable : l’essence verte
(5) Les alliages d’aluminium pour l’allègement des structures dans l’aéronautique et l’automobile
(6) Matériaux composites à matrice polymère
(7) Stockage de l’électricité : élément clé pour le déploiement des énergies renouvelables et du véhicule électrique
(8) Terres rares... vous avez dit rares ?
(9) Le pneumatique : innovation et haute technologie pour faire progresser la mobilité
(10) Ingénieur chimie des matériaux - Un métier de l'automobile (vidéo 2:10)
(11) La voiture électrique : virage ou mirage ?
Le « nouveau modèle énergétique français », projet de loi sur la transition énergétique, doit être discuté lors de la rentrée parlementaire. La transition s’impose devant l’approche du changement climatique et l’épuisement inéluctable des ressources naturelles.
Les priorités du projet de loi sont : la baisse des émissions de gaz à effets de serre, la diminution de la consommation en énergie des bâtiments et des transports, le développement des énergies renouvelables et la diminution de la facture pétrolière. On ne parle pas de la chimie dans le projet et pourtant elle est présente dans tous ces aspects.
C’est la chimie qui invente les matériaux pour économiser l’énergie (1), elle est primordiale pour la production d’énergie nucléaire (2). C’est grâce à la chimie des fibres et des polymères qu’on peut bien isoler les maisons et les habitations lors de la rénovation thermique (3). Le développement des énergies renouvelables dépend des possibilités de stockage de l’électricité (4) lorsqu’il n’y a pas de vent (éolienne) ou de soleil (photovoltaïque). C’est aussi avec les progrès en chimie du solide que de nouvelles couches minces actives vont revêtir les vitrages (5).
Enfin pour économiser les ressources non renouvelables la chimie du végétal (6) et le recours aux nouveaux biocarburants (7) sont des enjeux majeurs dans la stratégie de la transition énergétique. Il faut aussi rappeler que l’industrie chimique est « électro–intensive » c’est-a-dire qu’elle a besoin d’énergie pour fonctionner et progresser. Bien qu’elle ait réduit de 45% ses consommations et ses émissions en 15 ans, il faut préserver sa compétitivité.
Jean-Claude Bernier
septembre 2014
Quelques ressources pour en savoir plus :
(1) Les matériaux stratégiques pour l’énergie
(2) La chimie et sa R&D dans l’industrie nucléaire
(3) Vivre en économisant cette « chère » énergie
(4) Stockage de l’électricité : élément clé pour le déploiement des énergies renouvelables et du véhicule électrique
(5) Couches minces et énergie (vidéo 7:40)
(6) Le végétal, un relais pour le pétrole ?
(7) Les enjeux de la R&D en chimie pour le domaine des carburants et biocarburants
Avec la rentrée, professeurs, élèves, lycéens et étudiants vont découvrir de nouveaux programmes et de nouvelles matières à traiter ou à étudier. Avec les méthodes actives d’enseignement, des dossiers seront à créer, des rapports à écrire, des travaux personnels encadrés à réaliser.
En chimie, « mediachimie.org » vous offre une mine incomparable de documents d’actualité sélectionnés par des experts. Ce ne sont pas des cours tout faits, mais des éléments sur des points traités dans les programmes qui illustrent ces programmes et facilitent par des exemples leur compréhension.
Élèves et étudiants : six thèmes permettent de vous y retrouver suivant ce que vous avez à traiter : Nature, agriculture et environnement - Énergie et économie des ressources - Qualité de vie - Santé et bien–être - Analyse et imagerie - Histoire de la chimie.
Professeurs et enseignants, vous avez à votre disposition l'espace Éducation qui vous permet de rechercher par niveau tous les documents qui collent aux programmes : collège, seconde, premières, terminales, CPGE, IUT, BTS et Licences. En un seul clic vous avez tous les documents en rapport avec les lignes du programme que vous avez sélectionné.
Mediachimie.org ne s’adresse pas seulement aux élèves et professeurs. Il s’adresse aussi aux parents qui, non seulement peuvent trouver des documents explicatifs sur la chimie compréhensibles par tous et classés dans les thèmes, mais aussi sur les métiers qu’offre la chimie. En cliquant dans l’espace Métiers, on découvre la richesse des emplois et métiers dans la chimie, par thème, par fonction et type d’activités le tout résumé dans les fiches descriptives métiers.
Ne jetez pas au feu vos livres et vos cours de chimie bien sûr, mais tous et toutes à vos tablettes et à vos ordinateurs. Mediachimie.org c’est le site de la chimie pour la rentrée.
Jean-Claude Bernier
1er septembre 2014
En cette période estivale, près des 2/3 des vacanciers du mois d’août choisissent les plages atlantiques ou méditerranéennes. Si c’est votre cas, profitez d’un air iodé et de l’influence bienfaisante des bains de mer. Mais connaissez vous les richesses, les compositions chimiques et les dangers de la « belle bleue » ?
Si vous pratiquez la natation ou la planche à voile, vous pouvez enfiler la combinaison en polyamide élasthanne (1) fabriquée spécialement pour les champions et maintenant accessible à tout le monde. Si vous pratiquez le monde aquatique sous la surface, pour bien aérer vos poumons et maîtriser votre respiration, songez à la physico-chimie de la plongée (2).
Profitez des vacances pour vous pencher sur les richesses de la mer qui est devant vous. La biodiversité du bord de mer et celle des grandes profondeurs est formidable. Les plantes et les microorganismes peuvent recéler des trésors pour notre santé (3). De nouvelles molécules peuvent en être extraites pour de nouveaux médicaments. Tout l’environnement côtier et maritime pose de belles questions aux chimistes (4). Les fonds marins regorgent de ressources minières (5). Plusieurs essais de récupération des fameux nodules métalliques ont été couronnés de succès.
Robuste mais aussi fragile, la qualité de l’eau est un élément essentiel pour la baignade. L’analyse chimique et bactériologique la contrôle et rassure les estivants (6) et, en cas de pollution majeure, c’est encore la chimie qui est le recours (7).
Oxygénez vous loin de la pollution des grandes villes, mais une fois rentré, dans la chambre ou à la maison, veillez aussi à la qualité de l’air intérieur (8) !
Jean-Claude Bernier
1er août 2014
Quelques ressources pour en savoir plus :
(1) Des textiles pour sportifs. Apport de la chimie pour améliorer confort et performances
(2) Comprendre la physico-chimie par la plongée sous-marine
(3)Les médicaments de la mer : espoir ou illusion ?
(4) Les grandes questions en sciences chimiques de l'environnement marin
(5) Les ressources minérales du futur sont-elles au fond des mers ?
(6) L'homme, la chimie et la mer : connaître la contamination pour la combattre
(7)La lutte physico-chimique contre les marées noires : trente ans d'expérience
(8) La peinture qui dépollue (vidéo, 4:54)
Voici venu le temps des vacances pour profiter de la montagne, de la mer et … du soleil. Avant de vous adonner au « bronzing », sachez qu’il faut le faire avec précautions et avoir recours aux crèmes solaires (1) pour protéger votre peau du rayonnement solaire, car notre astre roi nous envoie des rayonnements ultraviolets (UV) de différentes longueurs d’ondes.
Les plus courtes (UVC) sont arrêtées par l’ozone dans la stratosphère et n’atteignent pas la peau. Les plus longues (UVB) sont absorbées et contribuent à la fabrication de la vitamine D (2). les plus nocives (UVA), encore plus longues, pénètrent le derme, accélèrent son vieillissement et peuvent induire par excès d’exposition des altérations de l’ADN et les cancers de la peau. A côté des mélanomes qui sont des protecteurs naturels produits par le soleil lors du « bronzage », la chimie vient au secours des filtres protecteurs par les crèmes cosmétiques.
Les crèmes sont des émulsions entre deux solvants organique et aqueux qui contiennent des filtres chimiques comme l’oxybenzone ou des imidazole sulfonates qui absorbent l’énergie du rayonnement en passant à un état excité. Pour empêcher qu’ils passent dans l’organisme, pour éviter les allergies on peut les encapsuler (3) dans des microsphères. Elles contiennent aussi des filtres minéraux comme l’oxyde de zinc ZnO ou le dioxyde de titane TiO2 (4) qui agissent comme des écrans en réfléchissant les rayonnements UV A et B. De nombreux autres composants et additifs font partie de la formulation (5) (6).
En fonction de la concentration en filtres chimiques ou minéraux les crèmes solaires ont des Facteurs de Protection Solaire (FPS) compris entre 6 et 50, elles protègent bien des UVB moins des UVA même pour « l’écran total ».
Protégez vous.
Attention à votre type de peau.
Profitez du soleil de manière responsable.
Jean-Claude Bernier
11 juillet 2014
Quelques ressources pour en savoir plus :
(1) Un exemple de composé chimique bénéfique à la santé de la peau : la crème solaire
(2) La chimie thérapeutique : de la biologie chimique à la découverte de nouveaux médicaments
(3) La microencapsulation : une technologie de choix pour la formulation d’actifs
4) Dioxyde de titane (produit du jour de la SCF)
(5) Fiche métier : technicien de formulation
(6) Bac +2/3 : vers les métiers de techniciens
La coupe du monde de football au Brésil va occuper toute la fin juin et le début juillet. Les joueurs se sont préparés physiquement (1) et mentalement (2) pour aller, si possible, en finale et la gagner. Si l’adresse et la qualité sportive des hommes est primordiale, la chimie ne sera pas absente dans la victoire !
Les compétiteurs ont pu s’entraîner sur des pelouses en gazon synthétique, doux, uniforme et qui évite les blessures, constitué de brins et tapis en polyéthylène (3) comme le Dowlex fabriqué en Espagne. Ils ont des chaussures d’athlètes qui combinent polyamide et polyester (4) pour être légères et dynamiques. Une firme française Arkéma fournit une partie des polyamides le Pebax® Rnew fabriqué à partir d’un produit naturel : l’huile de ricin issu de la chimie durable (5). Une usine Rhodia située à quelques pas de São Paulo où débutera la coupe le 12 juin, fournit une fibre miracle comportant un polymère et un solide minéral (6) qui sert à fabriquer des sous-vêtements sportifs thermorégulants absorbant la chaleur du corps et mettant les muscles en microcompression pour améliorer la circulation sanguine.
Il n’est pas jusqu’au ballon de la compétition, le « Brazuca » (7), composé de diverses pièces dérivant du pentagone en résines de polyuréthane, avec une surface comportant jusqu’à six couches de polymères l’Impranil® lui donnant souplesse, élasticité et dureté. Certaines chaussures des champions sont en fibres de polyisocyanate tricotées pour avoir à l’intérieur comme une seconde peau (8) et à l’extérieur une surface plutôt rugueuse, qui lorsque le joueur frappe le ballon légèrement de coté, met celui-ci en rotation et lui donne une trajectoire dite enveloppée, en cloche, se terminant dans la lucarne du but adverse.
Pour un mois …vive le foot et vive la chimie.
Jean-Claude Bernier
11 juin 2014
Quelques ressources pour en savoir plus :
(1) Effets de l'exercice physique et de l'entraînement sur la neurochimie cérébrale : effets sur la performance et la santé mentale
(2) Optimisation des performances, complexité des systèmes et confrontation aux limites
(3) Le polyéthylène (produit du jour de la SCF)
(4) La grande aventure des polyamides
(5) Chimie du végétal, fer de lance de la chimie durable
(6) Des textiles pour sportifs. Apport de la chimie pour améliorer confort et performances
(7) The Chemical World Tour saison 2
(8) Technologie et performance sportive
Une émission récente de télévision et quelques articles de presse peuvent laisser à penser que nous buvons tous les jours une eau polluée. Loin de ces affirmations alarmantes et médiatiques, les spécialistes de la chimie du traitement des eaux et les chercheurs qui analysent et travaillent à nous donner une eau plus propre, nous demandent de juger sur pièces !
L’eau (1) est un fluide fantastique, liquide entre 0°C et 100°C, vecteur de vie et d’échanges sur notre planète. Nous-mêmes sommes composés à plus de 60% d’eau.
Quels peuvent être les polluants de l’eau (2) ? Ils viennent de la nature et des activités humaines : les métaux lourds (3) comme le plomb (4), les pesticides et les nitrates issus principalement de l’agriculture (5), mais aussi des médicaments et hormones issus de nos organismes et qui se retrouvent dans les eaux usées.
Les stations d’épuration qui font face à un véritable défi (6) utilisent tout l’arsenal des méthodes chimiques pour éliminer ces polluants et purifier et rendre potable l’eau distribuée(7) (8). Nous avons en France la chance d’avoir une eau parfaitement saine au robinet (9).
Les recherches actuelles permettent de lancer de nouveaux procédés par membranes (10) ou par biochimie (11), pour éliminer les micropolluants et améliorer encore la pureté de notre eau.
Rappelons enfin que nous sommes particulièrement gâtés en France car sur terre, plus de 800 millions d’humains n’ont pas accès à l’eau potable et près de 2,5 milliards ne disposent pas de réseaux d’assainissement.
Jean-Claude Bernier
19 mai 2014
Quelques ressources pour en savoir plus :
(1) L’eau : ses propriétés, ses ressources, sa purification
(2) Quels sont les polluants de l’eau ? (vidéo, 3:00)
(3) Comprendre la pollution par les métaux
(4) Le plomb (produit du jour de la SCF)
(5) La chimie en agriculture : les tensions et les défis pour l'agronomie
(6) L’eau, sa purification et les micropolluants
(7) Fiche métier : Ingénieur de recherche /Chercheur
(8) Fiche métier : Agent de laboratoire / Aide-chimiste
(9) L’eau au labo (vidéo, 5:02)
(10) D’eau et de sel (vidéo, 14:00)
(11) Biochimie naturelle et traitement de l'eau : de la chimie des écosystèmes et des cocktails…
Le Groupe International d’Études du Climat (GIEC) vient de remettre fin avril le rapport consacré aux moyens de réduire les émissions de gaz à effet de serre. Il détaille par ailleurs les désastres et catastrophes à venir si rien n’est fait pour réduire ces émissions d’ici la fin du siècle : déplacement des espèces végétales et animales, inondations, baisse du rendement des cultures, érosion côtière…
L’industrie chimique depuis plus de trente ans s’est saisi du problème et a déjà fait d’importants efforts pour réduire ses émissions de plus de 50 %. C’est surtout le gaz carbonique CO2 émis par la combustion des hydrocarbures qui est le premier responsable de l’effet de serre (1). La taxe carbone qui devait limiter les émissions industrielles (2) est à son plus bas niveau.
Il reste donc à innover, et la chimie le fait en mettant en jeu des procédés nouveaux répondant aux principes de « la chimie verte » (3). C’est par exemple la production de biocarburants (4), le développement de catalyseurs hétérogènes (5) pour des procédés économes en énergie et le recours à la biomasse pour de nouvelles productions de molécules bio-sourcées (6).
Des nouveaux métiers se développent dans une industrie responsable qui donne une priorité aux ressources renouvelables (7) et prend de plus en plus de soin à maintenir la sécurité des installations et la propreté des rejets dans l’environnement (8) (9).
Jean-Claude Bernier
2 mai 2014
Quelques ressources pour en savoir plus :
(1) Le dioxyde de carbone, la molécule clé de la chimie du développement durable
(2) Carbone, vous avez dit carbone ?
(3) La chimie au cœur du développement durable
(4) Un exemple d’énergie renouvelable : l’essence verte
(5) La catalyse hétérogène : un outil clé pour le développement durable
(6) La chimie végétarienne : une chimie au régime ?
(7) Fiche métier : Responsable / Ingénieur Hygiène Sécurité Environnement (HSE)
(8) Fiche métier : Technicien environnement
(9) Fiche métier : Animateur Hygiène Sécurité Environnement (HSE)