- Éditorial
mediachimie

La chimie des feux de forêts

L’actualité de cet été 2018 a été marquée par les annonces et descriptions de feux de forêts. Le Portugal, la Grèce, la Suède, la Californie ont été les théâtres de gigantesques incendies très médiatisés où
...

L’actualité de cet été 2018 a été marquée par les annonces et descriptions de feux de forêts. Le Portugal, la Grèce, la Suède, la Californie ont été les théâtres de gigantesques incendies très médiatisés où l’élévation de température (1) ou des actes criminels (2) ont eu leurs rôles. Des centaines de milliers d’hectares et habitations ont été détruites malgré les grands moyens de lutte mis en action. Quelles sont les réactions chimiques présentes lors de ces embrasements et de leurs extinctions ?

Lors d’un feu de forêt, hors de la combustion du carbone des végétaux qui dégagent des oxydes de carbone CO2 et CO (3), de nombreux composés organiques volatils (4) sont présents dans les fumées issues de la pyrolyse de la cellulose. Ces composés ont été très étudiés par le CEREN en fonction du type de végétaux :

  • pour le chêne les fumées contiennent des composés benzéniques et phénoliques tels que C6H6, C7H8, du furfural C5H4O2, l’acide acétique, le p-crésol sont aussi présents, mais peu de terpènes ;
  • pour les ajoncs, buissons épineux et broussailles de sous-bois les fumées sont riches en benzène (5), toluène, xylène et acide acétique, mais pas de terpènes  ;
  • pour le pin au contraire on trouve dans les fumées beaucoup de terpènes et peu de composés phénoliques.

Tous ces composés volatils qui se dégagent lors de la pyrolyse sont très inflammables et dès qu’ils rencontrent les conditions favorables de température et de concentration en oxygène ils transforment les arbres en torches incandescentes quasi explosives telles que nous les décrivent les pompiers sur place.

Hors les principes de préventions mis en place notamment en France et en Europe du Sud, comment lutter contre les incendies lorsqu’ils se sont déclarés ? Les principes sont toujours les mêmes :

  • faire baisser la température de combustion (750 °C - 400 °C)
  • priver les composés carbonés d’accès à l’oxygène de l’air

C’est pourquoi depuis toujours on arrose les flammes avec de l’eau (6). Sa chaleur latente de vaporisation très élevée permet à l’eau de puiser des calories au brasier et de faire baisser la température. Sa vapeur remplace l’oxygène de l’air.

Depuis les années 1960, on y ajoute des retardateurs de combustion non toxiques pour l’environnement. Ce fut d’abord des ajouts d’argile (7) en suspension comme la bentonite qui recouvre d’une couche les végétaux et retarde la pyrolyse. Puis des hydroxydes d’aluminium, [Al(OH)3], ou de magnésium, Mg(OH)2, qui à température élevée délivrent de l’eau et donnent les oxydes Al2O3 ou MgO réfractaires.

Actuellement les moyens aériens et additifs largués se sont perfectionnés. On distingue trois types d’ajouts :

  • les retardateurs tels que les polyphosphates d’ammonium avec des argiles comme l’attapulgite dilués dans l’eau à 20 % ;
  • les agents mouillants de types tensioactifs ;
  • des agents moussants (8) comme l’hexylène glycol (ou 2-Methyl-2,4-pentanediol) et le n-octanol qui isolent de l’air le végétal par une couche de mousse adhérente.

Les techniques d’attaque du front de flamme se sont perfectionnées avec les célèbres canadairs qui en quelques secondes larguent 1/3 de leur charge de 7 m3 sur les flammes et 2/3 sur la végétation avant qu’elle soit atteinte par les flammes. On y ajoute un colorant qui est souvent l’oxyde de fer Fe2O3 de couleur rouge pour que les avions suivants voient bien la trace du largage précédent. Et que dire du supertanker de Boeing le 747–400 qui peut larguer en 10 secondes 72 m3 de mélanges que l’on a vu en action en Californie ? Mais finalement ne vaut-il pas mieux suivre en forêt les recommandations de prudence de la protection civile et des pompiers pour éviter la première flamme ?

Jean-Claude Bernier
Août 2018

Pour en savoir plus :
(1) Chimie atmosphérique et climat
(2) La chimie mène l’enquête
(3) Nom de code : CO2
(4) Pollution et feux de cheminées
(5) Sur la structure du benzène
(6) L’eau : ses propriétés, ses ressources, sa purification
(7) Biogéochimie et écologie des sols
(8) Les secrets des mousses, une interview de Claude Treiner
 

- Éditorial
mediachimie

Chimie et canicule

La fin du mois de juillet et le début d’août 2018 sont marqués par des températures notablement supérieures à la moyenne et plusieurs départements français ont été mis en vigilance canicule. Ces problèmes de chaleur
...

La fin du mois de juillet et le début d’août 2018 sont marqués par des températures notablement supérieures à la moyenne et plusieurs départements français ont été mis en vigilance canicule. Ces problèmes de chaleur touchent une partie de la population, surtout en milieu urbain. Comme il n’est pas facile de « mettre les villes à la campagne » comme le souhaitait Alphonse Allais, il s’agit de mettre en œuvre les moyens de lutter contre ces températures extrêmes dans les habitations, dispositifs où la chimie est largement sollicitée.

Essayons de se rappeler quelques éléments simples de thermodynamique. Dans un fluide gazeux les zones chaudes migrent inévitablement vers les zones froides. Pour un solide, sa conduction thermique facilite plus ou moins le transfert des calories du chaud vers le froid. Pour un liquide, en fonction de la température et de la pression, la vapeur est en équilibre avec le liquide. Pour passer de l’état liquide à l’état vapeur, il faut fournir une certaine quantité d’énergie qui est l’enthalpie de vaporisation qu’on appelle parfois chaleur latente et qui diffère suivant les formules chimiques des liquides (pour l’eau : 2260 kJ/kg, pour l’alcool 855 kJ/kg).

Premier moyen donc : améliorer l’isolation thermique des bâtiments (1), ce qui est valable en hiver l’est aussi en été. Isolation des combles par la laine de verre, de roche ou de cellulose, doublage des cloisons externes par le polystyrène expansé, double vitrage à lame d’argon, permettent de placer des barrières à très bonne isolation entre l’extérieur et l’intérieur (2).

Deuxième moyen : utiliser un liquide à bonne chaleur latente et l’évaporer à l’intérieur car il va pomper les calories et évacuer les vapeurs à l’extérieur pour les recondenser en évacuant les calories grâce à un échangeur. C’est le principe du climatiseur en utilisant un fluide frigorigène comme des chlorofluoroéthanes (maintenant interdits) ou l’ammoniac qui ont des températures d’ébullition assez basses sous des pressions compatibles avec des installations domestiques.

On peut aussi utiliser de petits ventilateurs refroidisseurs qui utilisent l’évaporation d’un film d’eau, car l’eau a une forte chaleur latente, capables de refroidir de quelques degrés une pièce de la maison.

Le problème des grandes villes est plus large (3), car elles possèdent des « îlots de chaleur », en centre-ville le béton, le goudron, absorbent la chaleur le jour et la restituent la nuit et la température nocturne reste élevée. La forme et l’implantation des bâtiments et surtout la végétalisation sont de nature à refroidir l’atmosphère (4). En effet, les arbres font de l’ombre et leurs feuilles rejettent la vapeur d’eau. Lors des fortes chaleurs, il peut y avoir 3°C de différence entre le Bois de Boulogne et le centre de Paris. En ville, moins utiliser la climatisation mais avoir plutôt recours au réseau de froid urbain (5) qui utilise de l’eau naturelle glacée et qui permet d’économiser plus de 90 % de gaz à effet de serre. Avoir des revêtements clairs réfléchissant les rayonnements, remplacer le goudron par des pavés granit plus poreux et moins absorbants sont les éléments d’une nouvelle politique de la ville. Enfin la circulation automobile (6), n’oublions pas que le moteur thermique même s’il émet du CO2 émet aussi des calories car le rendement d’un moteur thermique (7) est de l’ordre de 40% ceci veut dire que 60 % des 44000 Kj/kg d’essence servent à chauffer l’atmosphère des villes. Demandez donc de nouvelles pistes cyclables et roulez en vélo mais avec un bidon d’eau fraiche.

Jean-Claude Bernier
Août 2018

Pour en savoir plus
(1) La discrète révolution de la performance énergétique des bâtiments
(2) Vivre en économisant cette « chère » énergie
(3) Les défis des grandes villes : apports possibles des chimistes
(4) Impact de la végétation sur le microclimat urbain et la qualité de l’air
(5) Le réseau de froid urbain
(6) La mobilité urbaine
(7) Le moteur électrique comparé au moteur thermique : enjeux et contraintes

- Événements

Colloque Chimie, Nanomatériaux, nanotechnologies - 7 novembre 2018

Venez découvrir le nanomonde - l’organisation de la matière à l’échelle du nanomètre - le millionième de millimètre et ses applications lors du colloque : CHIMIE, NANOMATERIAUX, NANOTECHNOLOGIESMercredi 7 Novembre 2018 Ce
...

Venez découvrir le nanomonde - l’organisation de la matière à l’échelle du nanomètre - le millionième de millimètre et ses applications lors du colloque :

CHIMIE, NANOMATERIAUX, NANOTECHNOLOGIES
Mercredi 7 Novembre 2018

Ce colloque est ouvert à un large public, avec une attention particulière aux lycéens, aux étudiants et à leurs enseignants.

Depuis une vingtaine d’années les responsables industriels comme les scientifiques ont découvert le « nanomonde » - l’organisation de la matière à l’échelle du nanomètre - le millionième de millimètre. Des applications de toutes sortes sont apparues qui changent les capacités techniques dans des domaines très variés – qu’il s’agisse du bâtiment, des textiles, des télécommunications et des technologies numériques ou encore de la santé et des nano-médecines.

Les produits de la vie quotidienne - alimentation, cosmétiques, produits d’entretien, etc. - n’échappent pas à ces évolutions : ils font un usage extensif de nanomatériaux comme additifs. Ces utilisations suscitent à juste titre des questions sur les risques sanitaires qu’elles pourraient induire, questions rendues difficiles en raison des incertitudes qui demeurent quant à l’activité biologique des nanomatériaux.

Ce colloque dans lequel nous avons réuni des experts chimistes, physiciens, biologistes, universitaires et industriels, a l’objectif d’illustrer la richesse du nanomonde en présentant la découverte continue de nouveaux nano-objets naturels ou artificiels et de nouvelles propriétés, qui mobilise tant les milieux scientifiques qu’industriels. Le colloque présentera des perspectives de développement des nanotechnologies dans les domaines d’actualité (comme le développement des batteries pour les voitures électriques ou celui des capteurs de l’état de l’environnement), mais il illustrera aussi le soin qui est apporté par tous les acteurs à l’évaluation de la toxicité des nano-objets par le développement de méthodes de caractérisation spécifiques de l’échelle nanométrique.

Le niveau des interventions se veut accessible à tous pour permettre un large débat.

 

Les inscriptions, gratuites mais obligatoires, sont ouvertes dès à présent.

En savoir plus

- Éditorial
mediachimie

La chimie en Bleu Blanc Rouge

En cette fin de coupe du monde et le magnifique comportement des « bleus » on voit fleurir un peu partout, dans les magasins, sur les automobiles, sur les façades des maisons, et au-dessus des rassemblements innombrables,
...

En cette fin de coupe du monde et le magnifique comportement des « bleus » on voit fleurir un peu partout, dans les magasins, sur les automobiles, sur les façades des maisons, et au-dessus des rassemblements innombrables, les drapeaux bleu blanc rouge. Pour la plupart ces drapeaux sont issus d’une PME française qui les fabrique à partir de coupons de tissus teints dans les trois couleurs nationales et ensuite assemblés.

Les couleurs de ces teintures sont maintenant synthétisées par la chimie organique mais il existe encore de nombreux pigments minéraux organiques ou végétaux qui sont utilisés pour les vernis, les peintures et les teintures (1).

Bleu – De nombreuses nuances ont été trouvées par les chimistes : le bleu outremer dont le constituant essentiel vient d’une pierre naturelle le lapis-lazuli, le bleu de Prusse qui est un ferrocyanure Fe4[Fe2(CN)6]3 découvert un peu par hasard à Berlin par Dippel, le bleu de cobalt qui est un aluminate CoAl2O4 de structure spinelle dont le procédé de synthèse a été découvert par le français Thénard en 1802, et enfin le bleu indigo (2) qui est un nitrobenzoate de sodium très célèbre car c’est lui qui colore les tissus de jeans (3).

Blanc – Il faut remonter à la civilisation égyptienne pour voir les premiers fards à base de sels de plomb (4), la cérusite PbCO3 de phosphogénite Pb2Cl2CO3 de laurionite Pb(OH)Cl mélangés à de la graisse (5). Le blanc de zinc ZnO est obtenu par oxydation d’un minerai, la blende. L’oxyde de titane TiO2 (6) est très lumineux avec lequel on fabrique des centaines de milliers de tonnes pour les peintures, les papiers et les revêtements d’immeubles.

Rouge – Sans compter l’hémoglobine du sang (7) qui est un composé organique du fer et qui sert à l’échange d’oxygène, on connait l’alizarine extraite de la racine d’une plante, la garance, qui colorait les pantalons des uniformes de l’armée avant 1914 et qui fut abandonnée car trop voyant, le minium Pb3O4 utilisé sur les aciers et sur le fer comme protection anticorrosion et la cochenille qui est un pigment à base d’acide carminique extrait d’un insecte.

Jean-Claude Bernier
Juillet 2018

Pour en savoir plus
(1) La chimie crée sa couleur… sur la palette du peintre
(2) La synthèse de l’indigo (vidéo 4:30)
(3) La teinture d’un jeans (vidéo 5:03)
(4) Même les pharaons se maquillaient
(5) Dermo-cosmétique et beauté à travers les âges
(6) Les textiles photocatalytiques
(7) Le sang des animaux est-il toujours rouge ?


 

- Événements

Le nouveau tableau de Mendeleïev du World Materials Forum

Le World Materials Forum qui s’est tenu cette semaine du 23 au 28 juin à Nancy et qui réunit la plupart des experts internationaux miniers et métallurgistes a réalisé deux études pour évaluer la criticité de plusieurs
...

Le World Materials Forum qui s’est tenu cette semaine du 23 au 28 juin à Nancy et qui réunit la plupart des experts internationaux miniers et métallurgistes a réalisé deux études pour évaluer la criticité de plusieurs métaux ou éléments du tableau périodique. Ils se sont focalisés sur les métaux intervenant dans plusieurs secteurs stratégiques : l’électronique, l’énergie, l’aéronautique, la défense, l’automobile.

Le BRGM (Bureau de recherches géologiques et minières) avec le Comité ministériel pour les métaux stratégiques (Comes) vient à cette occasion de publier un nouveau tableau de Mendeleïev qui évalue pour chaque numéro atomique les risques d’approvisionnements pour l’industrie Française et européenne : risques élevés (rouge), veille attentive (jaune), risques faibles (vert).

Ils ont ainsi identifiés six métaux dont la pénurie nous guette : le cobalt (1), le tungstène, l’étain, le cuivre, le nickel et le zinc qui doivent être sous haute surveillance pour des raisons variables : géopolitiques, réserves limitées, monopole géographique d’un État, consommation exponentielle, volatilité des prix.

Mediachimie a déjà attiré l’attention sur ces problèmes, tout indique que l’on doit, nous chimistes, nous impliquer davantage dans des méthodes innovantes de recyclages (2) et d’extractions minières.

Jean-Claude Bernier
Juin 2018


 

Voir le tableau de Mendeleïev revisité par le BRGM et les consultants de CRU et de McKinsey sur le site de l'Usine Nouvelle : [lien]

Pour en savoir plus :
(1) Et si le cobalt manquait... quel serait l’avenir des voitures électriques ?
(2) Vie et recyclage des appareils et supports numériques (Chimie et… Junior)
 

- Question du mois
mediachimie

Comment draguer Morphée et le quitter ?

Un clin d'œil à la chimie du réveil et du coucher Quand le soleil se lève…La couleur bleue du matin éveille en nous la synthèse de multiples molécules chimiques et en particulier au niveau du cerveau de nombreuses
...

Un clin d'œil à la chimie du réveil et du coucher

Quand le soleil se lève…

La couleur bleue du matin éveille en nous la synthèse de multiples molécules chimiques et en particulier au niveau du cerveau de nombreuses molécules dites neuromédiateurs ou neurotransmetteurs. Il s’agit de petites molécules, lesquelles, une fois synthétisées dans les cellules, sont déversées dans le liquide intercellulaire (entre les cellules) pour transmettre des messages relatifs à l’éveil et au tonus (1).

Nos humeurs, notre équilibre affectif, notre appétit, nos motivations durant la journée en dépendent fortement. La sérotonine, la dopamine comme la noradrénaline en font partie (2). Un défaut en sérotonine ou en dopamine peut conduire à des pathologies graves comme, réciproquement, la dépression ou la maladie de Parkinson.

Les sources d’alimentation influencent aussi et pour beaucoup l’approvisionnement de l’organisme en ces deux neuromédiateurs : leur biosynthèse a lieu dans l’organisme à partir des acides aminés dits essentiels c’est-à-dire apportés par la nourriture. Il s’agit du tryptophane pour la sérotonine et de la phénylalanine pour la dopamine (3). Les protéines contenant le plus ces acides aminés sont celles issus du soja, des haricots secs, des lentilles, des graines de noix, œufs, légumes, fruits, poissons et viandes. Dans l’ensemble il faut privilégier plutôt les légumes secs, les lentilles, les noix et non une alimentation hyper-protéinée.

Quand le soleil se couche…

Le soleil tombant, la couleur rougeâtre va changer les processus physiologiques.

Ainsi et à titre d’exemple la synthèse de la sérotonine va être revue à la baisse et le surplus circulant va être transformé en mélatonine (melanas en grec=encre noire), l’hormone qui va progressivement nous conduire vers les bras de Morphée (4).

La lumière, le soleil et le crépuscule remplaceraient abondamment et qualitativement nos réveils électroniques grâce à la chimie et ses impulsions par le simple déclenchement des régulations naturelles. À quand les chambres à coucher rougeâtres la nuit tombante et bleues le soleil levant ?

La preuve de concept étant presque faite, allons plus loin et imaginons des peintures intelligentes dont «l’Homme » aurait grand besoin ! Ses humeurs, son énergie, ses dépressions, son efficacité, sa prductivité au travail et son bien-être ne pourraient que s’améliorer !!

Constantin Agouridas et l'équipe Question du mois de Mediachimie

 

 

[1] L’influx nerveux (message) est ainsi transmis à partir des cellules nerveuses (neurones) vers d’autres neurones ou vers d’autres cellules de l’organisme comme les muscles…

[2] Ces trois molécules sont des amines. Leurs formules sont :

sérotoninedopaminenoradrénaline,  isomère L (R) est seul concerné

 


[3] La dopamine peut dans certaines circonstances trouver un autre précurseur endogène pour sa biosynthèse : la tyrosine. Il faut noter que la source de la tyrosine dépend aussi de la phénylalanine…
Pour ces 3 acides aminés, seuls les isomères L (S) sont impliqués.

L (S) phénylalanineL (S) tryptophaneL (S) tyrosine

 

[4]La mélatonine ou « hormone du sommeil » a pour formule


La sérotonine subit une acétylation de sa fonction amine et une méthylation de sa fonction phénol, par voie enzymatique, dans la glande pinéale ou épiphyse, selon :

Bien que la morphine, tire son nom de Morphée, cette molécule complexe, utilisée contre les douleurs intenses, n’est pas synthétisée au sein de l’organisme, mais extraite de l’opium. Elle n’appartient pas au cycle circadien.


 

- Éditorial
mediachimie

Polémiques dans le monde des biocarburants

L’autorisation donnée à Total de pouvoir importer de l’huile de palme pour sa bioraffinerie de la Mède (Bouches du Rhône) a enflammé (si j’ose dire) le monde agricole, entraînant durant une petite semaine le blocage de
...

L’autorisation donnée à Total de pouvoir importer de l’huile de palme pour sa bioraffinerie de la Mède (Bouches du Rhône) a enflammé (si j’ose dire) le monde agricole, entraînant durant une petite semaine le blocage de sites pétroliers. Aussitôt les divers lobbies agriculteurs, pétroliers, écologistes, se sont affrontés sans vraiment apporter des arguments scientifiques.

Que sont les biocarburants et plutôt les agrocarburants (1) en France ? Ce sont des substituts du pétrole biosourcés, incorporés à l’essence sous forme d’éthanol (2) ou au diesel sous forme d’esters d’huiles végétales (3) (4). Ces agrocarburants sont plus chers à produire que le pétrole à extraire et à raffiner et leurs cours assez volatils sont liés au marché pétrolier et au coût des produits agricoles. L’éthanol américain est 10% moins cher que celui produit en Europe et le biodiesel à base de colza est 30% plus coûteux que celui provenant de l’huile de palme.

Quand Total a décidé de reconvertir la raffinerie de la Mède, condamnée à la fermeture, dans une stratégie plus globale de diversification en énergies décarbonées, les agrocarburants étaient incontournables. Les 275 millions d’euros investis permettaient de plus de sauvegarder quelques centaines d’emplois et de garder une activité portuaire en PACA avec le transit de 450 000 T d’huile. De plus le procédé retenu le HVO (Hydrotreated Vegetable Oil) est l’aboutissement industriel d’un procédé français Vegan® mis au point par l’IFPEN et la société Axens (5). Il s’agit d’un traitement à l’hydrogène sous pression des huiles végétales sur catalyseur qui aboutit à l’hydrodesoxydation des acides gras pour former des paraffines linéaires. Deux voies coexistent :

  • l’hydrogénation/hydrogénolyse notée HDO qui élimine l’oxygène sous forme de H2O
  • la décarboxylation notée DCO l’oxygène étant éliminée sous forme de CO2

Une réaction d’hydroisomérisation améliore les chaînes paraffiniques pour donner un gazole remarquablement stable parfaitement compatible avec les produits pétroliers et utilisable pour le transport aérien (6).

On comprend la colère des agriculteurs et agro-transformateurs existants s’étant investis dans la culture du colza, blé, betterave… pour produire le bioéthanol et le biodiesel et celui du ministère du développement durable peu enclin à se lancer dans une guerre géopolitique avec l’Indonésie ! D’autant que des nuages sombres s’amoncellent sur l’avenir de la filière. En effet si en France les ajouts d’éthanol dans les essences de 10% dans le super 95 E10 progressent (ce dernier atteint 35% des ventes) et que les esters d’huile végétale atteignent 8% dans le gasoil, la Cour des comptes pointe les détaxations et subventions de l’État français chiffrées à plus de 1,3 milliards d’euros en 2012. À Bruxelles c’est pire, un rapport paru en avril 2016 repris par l’ONG Transport & Environnement conclut que les agrocarburants, loin d’être vertueux pour l’environnement, émettent en fait plus de gaz à effet de serre que les combustibles fossiles. Cette enquête commandée par la commission est corroborée à un degré moindre par une remarquable étude de l’ADEME et de l’INRA sur le facteur CAS (Changement d’Affectation des Sols) qui prend en compte la perte de « puits de carbone » engendrées par ces cultures industrielles. S’appuyant sur 800 publications et rapports internationaux ils chiffrent des fourchettes de 35 à 84 g. eq CO2 / MJ pour le biodiesel et de 25 à 80 g. eq CO2 /MJ pour le bioéthanol, qui doivent s’ajouter au bilan d’émission (culture, transport de la biomasse, transformation chimique, distribution) et complexifient encore l’évaluation (7).

On est alors loin de pouvoir satisfaire les normes de la directive européenne RED (Renewable Energy Directive) qui fixait des objectifs de réduction de GES (gaz à effet de serre) de 35% en 2017 et 50% en 2018 des biocarburants par rapport aux carburants fossiles. Alors quelles solutions ? Accélérer la voie industrielle du traitement par biochimie des lignocellulosiques pour les carburants 2G (8) ou diversifier la chimie végétale en produisant des molécules à haute valeur ajoutée (9) plutôt que des carburants, ce sont deux voies d’avenir et de sauvetage.

Jean-Claude Bernier
Juin 2018

Pour en savoir plus :
(1) Les enjeux de la R&D en chimie pour le domaine des carburants et des biocarburants
(2) L’éthanol (produit du jour de la SCF)
(3) Un exemple d’énergie renouvelable : l’essence verte
(4) Le colza à la pompe (vidéo)
(5) Voir le remarquable article de Thierry Chapus : L’Actualité chimique (mars 2017) n° 416 p. 32
(6) Chimie du végétal, fer de lance de la chimie durable
(7) Des biocarburants pas si verts que ça
(8) Le biocarburant 2G bientôt à la pompe
(9) Biomasse : la matière première renouvelable de l’avenir