Dans les années 1970 après le choc pétrolier, les prévisionnistes auguraient du « peak oil » (pic pétrolier) qui marquerait le moment où la production mondiale plafonnerait avant de diminuer en raison de l’épuisement des réserves mondiales. Cinquante ans après, alors que l’exploitation des huiles de schistes (1) américaines est passée par là, l’horizon du pic pétrolier a bien reculé, d’autant que les découvertes de gisements géants en Afrique, à Bahreïn, en Afrique subsaharienne, en Chine, en Alaska… se chiffrent à plus de 200 milliards de barils *.
En 2019, les prévisionnistes parlent maintenant d’un « peak oil demand » (pic de la demande pétrolière), c’est-à-dire que la consommation en pétrole diminuera avant que la production ne décroisse. Ainsi, la consommation, notamment en Europe, est de plus en plus sensibilisée par les alertes alarmistes sur le climat, les GES (gaz à effet de serre), les particules fines, la pollution et aussi par le prix des carburants à la pompe, ce qui nous incite à la diminution de l’usage des ressources fossiles.
Des faits et comportements nouveaux apparaissent. Alors que près de 60% du pétrole est encore consommé au niveau mondial par les véhicules particuliers et les transports (dont un peu moins de la moitié par nos véhicules particuliers et un peu plus par les autres transports), plusieurs pays annoncent la fin des véhicules thermiques d’ici 2040. Déjà, la réglementation européenne Euro 6 impose aux constructeurs des normes drastiques de consommation les obligeant à des prouesses techniques de « downsizing ** » et la mise sur le marché d’un nombre croissant de véhicules électriques (2). Certains gouvernements (France, Danemark) ne délivrent plus de permis d’exploration exploitation du pétrole sur leur territoire.
Même les compagnies pétrolières se diversifient en privilégiant d’abord le gaz, puis les énergies renouvelables (3). Shell annonce devenir un des premiers fournisseurs d’électricité. Total a racheté le fabriquant de batteries Saft (4) et vient d’investir sur l’emplacement de son ancienne raffinerie de Grande-Synthe les infrastructures test du projet BioTfuel destiné à l’élaboration de biocarburants de seconde génération à partir de biomasse lignocellulosique (5). Ceci-dit, même si en Norvège 60% des véhicules neufs sont électriques, il n’y a au monde en 2018 que 2,7 millions d’automobiles électriques sur le milliard de véhicules en circulation. Le calcul montre que l’électrification complète du parc mondial des véhicules particulier n’économiserait que 18 millions de barils/jour sur les 100 millions barils/jour actuels.
Pour la chimie et notamment la pétrochimie, les prévisions sont plus difficiles et suivant les agences intergouvernementales les chiffres varient. À partir du pétrole on extrait un certain nombre de produits :
- en tête de colonne d’abord le méthane pour le formaldéhyde et l’hydrogène,
- puis le butadiène pour les caoutchoucs, l’éthylène, le propylène, le butadiène pour les plastiques, les engrais et mousses isolantes,
- viennent ensuite les aromatiques pour les polyesters, les polystyrènes et les produits de base pour les médicaments,
- enfin les huiles et produits lourds.
Toutes ces fabrications utilisent environ 13% du pétrole, part qui pourrait monter à 22%, voire doubler, d’ici 2040 sans régulation comme par exemple l’interdiction mondiale des objets en plastique à usage unique et l’obligation planétaire du recyclage (6).
Pour les bâtiments, l’isolation et la réglementation thermique de la très basse consommation (BBC) va entrainer une baisse de la consommation du gasoil que l’on estime de l’ordre de 70 millions de TEP d’ici 2040.
La chimie verte aura aussi sa part dans l’économie des ressources carbonées fossiles. Arkema, par exemple, investit des centaines de millions en Asie pour sa 4e usine de polyamide fabrication à base de plante de ricin (7). La chimie végétale comme la chimie durable entrainera une baisse de la consommation d’énergie, de solvants et de déchets. Les procédés biotechnologiques se sont développés par crainte du manque de ressources fossiles mais aussi au début de notre décennie à l’approche de la barre des 120 $ le baril. Les procédés de fermentation bactérienne des sucres, des déchets végétaux et du bois pour la production d’isobutène matière première pour le caoutchouc et les plastiques ont été multipliés par des start-ups et les investissements de grands groupes, mais la chute du baril à 60$ a aussi fait chuter les espoirs des industriels confrontés à la concurrence et la compétitivité des mêmes produits issus de la pétrochimie (8). En Europe, on estime que les produits biosourcés, bien que ne représentant en 2019 que 3% du total des produits chimiques, ont un réel potentiel de progression. La condition est d’une part qu’ils présentent de meilleures propriétés et d’autre part de trouver des créneaux comme l’alimentation et la cosmétique où les consommateurs et les grandes enseignes demandent plus de « naturalité ».
Il est clair que toutes ces évolutions feront baisser les besoins mais il reste à prévoir la date à laquelle la courbe de consommation s’inversera et le « pic oil demand » interviendra. Les cabinets d’experts qui partagent cette analyse donnent une fourchette assez large : 2030 pour BP, 2050 pour l’AIE (agence internationale de l’énergie) avec des valeurs de production de 150 millions de barils/jour. Alors oui, au Japon la consommation stagne, l’Europe a réduit sa consommation de 4% en 5 ans mais le reste du monde l’a augmentée de 16%. L’accès à l’énergie, même chère, de plus de 5 milliards d’humains doit nous faire encore patienter de quelques dizaines d’années pour « l’après-pétrole ».
Jean-Claude Bernier et Catherine Vialle
Juin 2019
* Un baril est une unité de mesure pour le pétrole, qui vaut exactement 42 gallons américains, soit environ 159 litres.
** Le downsizing des moteurs vise à diminuer la cylindrée d’un moteur en gardant la même puissance finale et ainsi réduire la consommation.
Pour en savoir plus :
(1) Gaz de schistes : quels problèmes pour l’environnement et le développement durable ?
(2) L’industrie chimique au service de l’automobile
(3) Un exemple d’énergie renouvelable : l’essence verte
(4) Applications présentes et futures des batteries
(5) Des carbohydrates aux hydrocarbures
(6) Panique sur les déchets
(7) La grande aventure des polyamides
(8) Les variations de prix du baril et les énergies renouvelables
Les grandes branches des biotechnologies sont classées par couleur en Europe :
- les biotechnologies vertes concernent l’agro-alimentaire,
- les biotechnologies rouges touchent le domaine de la santé,
- les biotechnologies blanches regroupent les applications industrielles, par l’emploi de systèmes biologiques comme alternative aux procédés chimiques classiques. Les premières utilisations sont dans les secteurs des polymères, des carburants, des dissolvants, de la construction, du textile, et de tous les produits à dominante chimique,
- les biotechnologies jaunes rassemblent toutes les biotechnologies se rapportant à la protection de l’environnement et au traitement ou à l’élimination des pollutions,
- les biotechnologies bleues développent des produits en liaison avec la biodiversité marine : santé, cosmétique, aquaculture, agro-alimentaire.
On voit ainsi que les biotechnologies sont présentes dans tous les secteurs (santé, agricole, cosmétologie, environnement) et en cela Mediachimie contribue à enrichir en ressources les thématiques enseignées.
Voir : https://www.supbiotech.fr/ecole-ingenieurs-biotechnologies/secteur »
Dans le cadre de l’année de la chimie, de l’école à l’université, le challenge Lavoisier a réuni des étudiants des écoles d’arts et design autour de la vie et l’oeuvre de Lavoisier. Les 4 projets distingués vont être produits en série et seront offerts aux participants des Olympiades internationales de Chimie 2019 (IChO2019). Gilles le Maire, Délégué Général de France Chimie Ile de France, explique les raisons de l’engagement de son organisation.
. @FranceChimie est l'organisation professionnelle qui représente les entreprises de la #chimie en France.
— IChO 2019 (@icho2019paris) 10 mai 2019
Gilles Le Maire, Délégué Général @FranceChimieIDF nous explique les raisons de son soutien aux Trophées Lavoisier ! (2/2) pic.twitter.com/nbWjNmGnpm
@FranceChimieIDF soutient « Les Trophées Lavoisier » ! Les 4 objets lauréats seront remis aux @ICHO2019 !@EducationFrance @jmblanquer @anneszymczak @Academie_Paris @boulleparis @sup_recherche @BASF_FR @ealico_sas @CalyxiaHQ @Arkema_fr @Adisseo https://t.co/Ub2sY17KwK
— France Chimie Ile-de-France (@FranceChimieIDF) 10 mai 2019
À l'occasion de l'année de la chimie, jeudi 27 juin 2019 aura lieu
Le festival des couleurs
à la Maison du Soleil de Saint-Véran (site de la Maison du Soleil).
Programme du Festival des couleurs
- 14h00 : De la couleur à foison !
Expériences chimiques époustouflantes avec Jean-Pierre Foulon : le volcan, les encres invisibles, la bouteille bleue…
- 16h00 : De quoi est composée la matière
Le tableau de la classification périodique des éléments avec Jean-Claude Bernier;
- À partir de 15h30 second groupe de manipulations, expériences…;
- 18h00 : Les véhicules électrique pas si verts que ça
Conférence de Jean-Claude Bernier
Non le gaz carbonique n’est pas un polluant, chimistes et biochimistes répètent à l’envie : le CO2 c’est aussi la vie ! (1) En effet si le carbone est l’élément essentiel du monde vivant, couplé à deux oxygènes et caressant une feuille sous le soleil et en présence d’eau, il permet aux végétaux de produire des molécules organiques telles que les sucres et la cellulose, âmes de la biomasse. Cette réaction naturelle de la photosynthèse fascine depuis longtemps les chercheurs qui rêvent de la reproduire (2).
Depuis plus de vingt ans, l’imagination des électrochimistes a permis de belles avancées (3). Le schéma le plus efficient couple une cellule photovoltaïque (4) qui sous rayonnement solaire fournit des électrons à une cellule électrochimique qui oxyde l’eau à l’anode et réduit le CO2 à la cathode.
Plusieurs réalisations ont déjà vu le jour fournissant à partir du CO2 du CO, des alcools, des acides organiques et même du méthane. Les rendements ont été parfois très corrects et supérieurs à celui de la photosynthèse naturelle, mais ils nécessitent le plus souvent des matériaux peu abondants et coûteux - des semiconducteurs de type AsGa, des catalyseurs à base de métaux précieux (rhodium, iridium, platine…) - rendant ces cellules difficilement extrapolables à grande échelle.
Pour passer à une échelle industrielle, ces systèmes mimant la photosynthèse naturelle doivent remplir plusieurs conditions :
- une réduction catalytique efficace du CO2 avec des électrocatalyseurs ne comportant pas de métaux rares ou chers (5) ;
- un milieu électrolytique stable et de pH peu acide pour limiter la corrosion ;
- un design de cellule avec une répartition des compartiments anodiques et cathodiques optimales pour éviter les pertes ohmiques ;
- un couplage à un système photovoltaïque robuste et peu coûteux.
C’est ce qu’a réussi un groupe de chercheurs européens coordonné par le Laboratoire de Chimie des Processus Biologiques (LCPB) du Collège de France (*). Après des années de recherche ce groupe a mis au point un système comprenant :
- une cellule d’électrocatalyse optimisée avec une distance anode-cathode réduite permettant un courant stable sous une tension inférieure à 3V ;
- des solutions électrolytes peu corrosives comportant des concentrations stabilisantes de bicarbonate ou carbonate de cesium ;
- des matériaux d’électrodes à base de cuivre où à la cathode sont présentes des couches d’oxyde Cu2O et CuO (6), la dernière montrant une structure dendritique nanostructurée poreuse ;
- une cellule photovoltaïque originale constituée de pérovskite (7) de type CH3NH3 Pb I3-x Brx fabriquée simplement par multicouches fonctionnelles avec des éléments abondants.
En fonctionnement, sous un flux de gaz CO2, la réduction de ce gaz et l’oxydation de l’eau fournissent des mélanges d’hydrocarbures tels que C2H4, C2H6, et CO, H2 bases de la chimie organique. Le rendement calculé par rapport à CO2 est de 2,3% (plus élevé que les 1% de la photosynthèse naturelle). Ce qui est important à souligner est que ce nouveau procédé mêle au moins deux innovations :
- une cellule électrocatalytique utilisant un métal abondant et très utilisé le cuivre
- et un générateur photovoltaïque à base de pérovskite se fabriquant à température ordinaire par sérigraphie de multicouches de matériaux peu coûteux, dont la fabrication industrielle commence.
Bien sûr des études complémentaires de procédés sont à faire car la cellule fonctionne avec du dioxyde de carbone pur alors que dans l’atmosphère (8) il est dilué à 400 ppm. L’augmentation des surfaces de contact ou le captage et la concentration peuvent être des solutions futures pour le développement industriel (9). Alors on peut se mettre à rêver à une économie de carbone en cycle fermé, en imaginant que nos combustibles seraient issus du même dioxyde de carbone produit par leur combustion. Voilà une belle solution à l’épuisement des ressources carbonées fossiles.
Jean-Claude Bernier et Catherine Vialle
Mai 2019
Pour en savoir plus
(1) Le CO2, matière première de la vie (Chimie et … Junior)
(2) Que faire du CO2 ? De la chimie ! 1334
(3) Les nouvelles cellules solaires nanocristallines 242
(4) Le soleil comme source d’énergie – le photovoltaïque 268
(5) Énergie électrique et réduction du dioxyde de carbone : quels électrocatalyseurs ? 878
(6) Expérience de réduction de l’oxyde de cuivre II (The reduction of copper oxide) 987
(7) Cristaux, cristallographie et cristallochimie 934
(8) Atmosphère ! Atmosphère ! Alerte ! 1555
(9) Le dioxyde de carbone : enjeux énergétiques et industriels 875
(*) Low-cost high-efficiency system for solar-driven conversion of CO2 to hydrocarbons, Tran Ngoc Huan, Daniel Alves Dalla Corte, Sarah Lamaison, Dilan Karapinar, Lukas Lutz, Nicolas Menguy, Martin Foldyna, Silver-Hamill Turren-Cruz, Anders Hagfeldt, Federico Bella, Marc Fontecave, Victor Mougel, Proceedings of the National Academy of Sciences Mar 2019, 201815412
DOI: 10.1073/pnas.1815412116
Introduire l’histoire des sciences dans son enseignement c’est un moyen d’aborder autrement l’enseignement scientifique avec des conséquences positives tant sur la motivation des élèves que sur leur acquis. C’est aussi former des citoyens désireux et capables de s’impliquer dans les choix de société mettant la science en jeu.
Mediachimie a créé pour vous des vidéos passionnantes et riches d’informations. Vous trouverez ainsi une série d’anecdotes historiques relatives à la chimie, Les petites histoires de la chimie :
D’un point de vue pédagogique, ces animations sur l’histoire des sciences peuvent intervenir dans toutes les phases d’une séquence.
N’hésitez pas à les utiliser et si vous le souhaitez nous faire part de vous expériences pédagogiques.
Une mesure calorimétrique a pour but de déterminer des grandeurs thermodynamiques liées à un matériau ou à une transformation chimique ou physique grâce à la mesure d’une modification de la température du système considéré.
Au lycée, la transformation s’effectue dans un calorimètre adiabatique ou quasi-adiabatique (calorimètre de Berthelot, vase Dewar ou bouteille Thermos), enceinte calorifugée fermée pour laquelle on fait l’hypothèse qu’aucun transfert de chaleur ne s’effectue avec l’extérieur. L’application du premier principe de la thermodynamique permet d’accéder à des grandeurs thermodynamiques telles que les enthalpies de changement d’état, les capacités thermiques ou encore certaines enthalpies de réactions.
[…]
Lire la suite du Zoom sur la microcalorimétrie : du vase Dewar aux techniques de pointe
Dans le cadre de « l’Année de la chimie de l'école à l'université 2018-2019 » venez tester vos connaissances sur l’histoire du tableau de Mendeleïev et les symboles des éléments.
Retrouvez ici tous les quiz.
Vous pouvez également participer, pour les 150 ans du tableau périodique des éléments chimiques, au concours « Mendeleïev 2019 » organisé par l’Union des professeurs de physique et de chimie (UdPPC) dans les collèges et lycées.
Cela fait déjà presque six mois que deux trains à hydrogène Coradia iLint d’Alstom sont exploités commercialement en Allemagne sur la ligne Cuxhaven - Buxtehude de 100 km. La France se réveille à peine et un chargé de mission le député Benoit Simian a remis en novembre un rapport sur l’utilisation de tels trains pour les nombreuses petites lignes non électrifiées (1).
Vous avez tous sans doute emprunté des TER régionaux marchant au gazole avec des moteurs diesel, bruyants et dont les fumées noircissent les quais et halls des gares. Ce nouveau train franco-allemand est plus silencieux et n’émet que de la vapeur d’eau dans ses fumées. Il a été mis au point par le constructeur en 2016 grâce aux innovations menées par deux centres, celui de Salzgitter en Allemagne pour la partie électrique et celui de Tarbes en France pour la partie traction et moteurs.
Quelle est son originalité ? L’énergie électrique lui est fournie par une pile à hydrogène (2) qui transforme ce gaz combiné à l’oxygène de l’air en eau et électricité.
Faisons un peu de chimie (3). Dans la pile à hydrogène à l’anode se produit la demi-réaction H2 → 2 H+ + 2e-. Les électrons passent alors dans le circuit extérieur de charge. Les ions H+ qui ont traversé la membrane (électrolyte solide laissant passer les ions mais bloquant les électrons) rencontrent à la cathode l’oxygène de l’air et la demi-réaction suivante se produit ½ O2 + 2 H+ + 2e- → H2O. Ces réactions sont catalysées par une micro-couche de platine. L’électricité fournie est envoyée dans des batteries ion/lithium (4) qui servent de tampon et alimentent les moteurs électriques de traction du train. Ces moteurs peuvent aussi lors des freinages et ralentissements envoyer du courant pour recharger ces batteries. Un algorithme règle le fonctionnement des piles et des batteries en fonction de l’énergie demandée pour économiser l’hydrogène. Le train peut emporter 300 passagers à des vitesses comprises entre 80 et 140 km/h avec une autonomie d’environ 800 km.
Sur la ligne en Allemagne, près de la gare de Bremervörde se trouve le « ravitaillement » alimenté par des camions-citernes d’Air Products. L’entreprise Linde fournira prochainement une station hydrogène sous la forme d’un grand container d’acier contenant l’hydrogène sous pression. Les trains s’arrêtent le matin pour faire en une dizaine de minutes le plein d’hydrogène qui est stocké dans des réservoirs sur le toit des voitures à côté des piles à hydrogène (5). Ce plein d’environ 200 kg d’hydrogène lui donne une autonomie d’environ 800 km ce qui est suffisant pour faire plusieurs allers et retours et desservir 5 gares par jour sur le trajet. Le Land de Basse-Saxe a déjà commandé 14 Coradia à Alstom qui devraient être livrés dès 2020. Pour les dirigeants allemands c’est une alternative écologique aux diesels car bien moins polluants. Certes pour l’instant ils fonctionnent avec de « l’hydrogène gris » issu du steam craking du gaz ou des hydrocarbures qui dégage du CO2 (6), mais l’objectif est d’avoir dans l’avenir de « l’hydrogène vert » (7) issu de l’électrolyse de l’eau par un courant électrique fourni par des éoliennes par exemple. Un champ de 10 MW pourrait d’après les calculs fournir par jour 2,5 tonnes d’hydrogène pouvant alimenter 12 à 14 trains.
Il est paradoxal que c’est en Allemagne que s’inscrit cette première mondiale alors qu’Alstom est une société française. Nous avons aussi en France le 2e fournisseur d’hydrogène mondial, Air Liquide, et nombre de start-ups performantes dans le domaine du stockage comme McPhy Energy. Toutes les conditions de recherche et de développement sont réunies, encouragées par le plan national de développement de l’hydrogène. Pour rattraper notre retard j’espère que le rapport de Benoit Simian permettra de voir que, plutôt d’électrifier les quelques centaines de voies secondaires, il sera plus économique de développer les Coradia d’Alstom sur le réseau français dès 2022, et que la réglementation sur l’hydrogène carburant évoluera comme en Allemagne. C’est pour le bénéfice de l’emploi, pour garder aussi une longueur d’avance en France pour le ferroviaire et pour lutter contre la concurrence chinoise de CRRC.
Jean-Claude Bernier et Catherine Vialle
Mars 2019
Pour en savoir plus :
(1) Chimie et transport, quel rapport ?
(2) Fonctionnement de la pile à combustible
(3) La chimie et le rail
(4) Piles à combustible et batteries au lithium
(5) Le transport ou le stockage de l’énergie électrique
(6) Et revoilà l’hydrogène
(7) L’hydrogène vert au secours des renouvelables