Avec le renouveau de l’énergie nucléaire (1), de nombreux pays construisent de nouvelles centrales nucléaires. D’après l’AIEA plus de 44 centrales nucléaires sont en construction et plus de 70 projets de SMR sont en cours, la France qui vient de mettre en service un EPR2 à Flamanville se doit d’être présente dans la course.
Les réactions nucléaires
La réaction nucléaire de fission consiste à casser le noyau d’un élément lourd fissile à l’aide de la capture d’un neutron : par exemple, avec l’uranium 235 (2)
0n1 + 92U235 = 38Sr94 + 54Xe139 + 3 0n1 + Energie
L’énergie dégagée est considérable, par fission, 1 gramme d’U235 libère 70 fois plus d’énergie qu’un kilo de fuel. Les 3 neutrons libérés vont aller casser à nouveau 3 noyaux d’uranium. On s’arrange par ralentissement des neutrons à ce que le nombre moyen de fissions caractérisé par un facteur de multiplication k soit nettement inférieur à 3 et très proche de 1 pour que la réaction s’entretienne. C’est typiquement une réaction nucléaire avec des neutrons lents (RNL) pour les ralentir on utilise l’eau, soit bouillante, soit sous pression.
Dans un réacteur à neutrons rapides qu’on ne ralentit pas, on observe une probabilité plus grande de capture par d’autres éléments lourds non fissiles comme l’uranium 238 U238 : n + U238 = Pu239 + 3n.
Cette réaction se produit déjà un peu dans les réacteurs thermiques (RNL) mais on peut la favoriser dans les réacteurs sans ralentisseur, où par exemple on remplace l’eau par le sodium liquide. Ces réacteurs à neutrons rapides (RNR) vont générer et utiliser avec plus de chances comme élément fissile le plutonium (Pu) et d’autres produits de fission (3).
Les réserves d’uranium
En France, 56 réacteurs fournissent chaque année environ 400 TWh d’électricité en utilisant 1250 tonnes de combustible contenant 50 tonnes d’U235 enrichi à 4%. Au cours de la fission 20 tonnes de plutonium sont créées, dont une partie est séparée dans l’usine de retraitement de La Hague et recyclée dans le combustible MOX. Finalement seuls 0,5% des 9000 tonnes de d’uranium naturel (Unat) importé (50/9000) sont utilisés, c’est un vrai gaspillage (4).
Dans un réacteur à eau pressurisée (EPR) ou bouillante (EBR) on consomme annuellement environ 23 tonnes d’uranium naturel par TWh soit pour la France environ 9000 tonnes de Unat. Dans le monde, 60 000 t Unat sont consommées pour produire par l’électricité nucléaire 260 TWh. Comme nous allons vers une consommation d’énergie électrique en constante augmentation, les prévisions de l’AIEA conduisent à presque doubler les installations existantes pour une production de 60 000 TWh exigeant plus d’un million de tonnes d’Unat correspondant à la totalité des ressources mondiales d’uranium. Cette situation met en lumière un risque de pénurie dès la fin de ce siècle avec ses risques géopolitiques et économiques considérables. Les producteurs d’énergie n’investiront dans de nouveaux EPR que s’ils ont la certitude de pouvoir l’alimenter en uranium durant 60 à 80 ans (5).
Les RNR et la surgénération
Devant ce problème physicochimique et économique, la surgénération apporte la solution d’un cycle nucléaire durable. Comment est-ce possible ? Les neutrons rapides ont la propriété de pouvoir être absorbés par un noyau fertile U238 et de le transformer en noyau fissile Pu239 qui à son tour va donner des neutrons rapides. Ceux-ci vont à nouveau transformer d’autres noyaux d’U238 et donner d’autres isotopes du plutonium (239, 240, 241…). On a donc une réaction qui produit sa propre matière fissile et surtout à partir de l’uranium 238 qui constitue 99,3% de l’uranium naturel et qui n’était pas exploités dans les RNL ! Le nombre de neutrons émis par fission de Pu239 est plus important que pour U235 et si la valeur moyenne est supérieure à 2 on peut espérer produire plus de Pu que celui consommé. Dans un réacteur à neutrons rapides contrôlé, on peut soit entretenir la réaction avec sa propre matière fissile, soit en produire plus pour démarrer d’autres RNR. Et en France, on dispose d’une usine de traitement et de séparation pour récupérer le plutonium. De plus les neutrons rapides ont la capacité de transmuter les isotopes des actinides mineurs présents dans le combustible usé (Np237, Pu 238-242, Am 241, Cm244), et donc de supprimer les déchets nucléaires à vie longue et de diminuer la durée du stockage de 10 000 ans à 300 ans (6).
Une vision d’avenir
La France dispose d’un véritable trésor : d’abord 400 000 tonnes d’uranium 238 appauvri et 60 tonnes de plutonium déjà séparés par l’usine de la Hague (7). Cela permettrait d’ores et déjà de démarrer une petite dizaine de RNR et de disposer de réserves énergétiques pour fournir durant plus de 1000 ans les besoins en électricité de l’Hexagone. Les experts traduisent en termes énergétiques les 400 000 tonnes d’uranium 238 qui peuvent devenir fissiles dans les RNR à 900 milliards de tonnes d’équivalent pétrole, soit les réserves mondiales de « l’or noir ».
La France a d’autres atouts car elle dispose d’une expérience sur la filière la plus mature, RNR/ sodium, où le fluide caloporteur est le sodium fondu. Dès 1967 le réacteur Rapsodie à Cadarache, suivi en 1973 du réacteur Phénix, expérimental qui sera arrêté en 2009, a fourni des données très utiles sur la circulation du sodium et les perfectionnements en matière de sûreté. Puis, en 1976, une collaboration européenne a conduit à un réacteur de puissance (1200 MWe) Superphénix qui sera arrêté pour des raisons électorales en 1997. Enfin, en 2006, un nouveau prototype au sodium, ASTRID, qui intègre les nouvelles avancées en matière de sûreté et d’optimisation des coûts est lancé par le CEA, puis malheureusement abandonné en 2019 pour des raisons budgétaires et à nouveau politique (8).
C’est dommage, car plusieurs RNR sous forme de prototypes ou de réacteurs d’études fonctionnent en Chine et en Russie, l’Inde démarre un RNR de 500 MWe et heureusement, une collaboration Japon-Framatome-Orano vise un démonstrateur pour 2040 en France.
Les scientifiques et élus de l’OPECST (Office parlementaire d'évaluation des choix scientifiques et technologiques) soulignent que la relance d’un programme nucléaire de RNR est une mission de l’État. On peut regretter d’avoir par plusieurs fois arrêté son développement alors que nous étions, par le CEA, leader en ce domaine. L’indépendance énergétique de la France et de l’Europe exige une décision rapide et un investissement massif comme le souhaitent les Académies des sciences et des technologies avec une feuille de route de 2040 à 2100 conduisant à un démonstrateur en 2040 et des réalisations industrielles dès 2060. Vous, les jeunes, profitez de ce nouvel élan, Orano, Framatome, EDF, le CEA renouvellent leurs ingénieurs et techniciens et rajeunissent leurs cadres. La chimie nucléaire vous attend (9).

Schéma simplifié du processus simultané de régénération et de réaction de fission en chaine. Source image : site Sfen.org
Jean-Claude Bernier
Février 2025
Pour en savoir plus
(1) Le nucléaire devenu « vert » ?, J.-C. Bernier, éditorial, Mediachimie.org
(2) Équation d’une réaction nucléaire, Lucien Ransinangue, dossier pédagogique réalisé par les Éditions Nathan en partenariat avec La Fondation de la Maison de la Chimie et Mediachimie
(3) Le cycle de vie du nucléaire, B. Boulis, Clefs CEA, 61 (2013)
(4) De l’uranium à l’énergie nucléaire, vidéo du CEA
(5) On va manquer d’uranium, J.-C. Bernier, L’Actualité chimique (mai 2013)
(6) Le nucléaire dans le futur et la transition énergétique / complémentarité, C. Behar, Colloque Chimie et énergie nouvelles, Maison de la Chimie, 10 février 2021
(7) La chimie et sa R&D dans l’industrie nucléaire, F. Drain, Colloque Chimie et enjeux énergétiques, Fondation de la Maison de la chimie, 14 novembre 2012
(8) ASTRID, démonstrateur technologique du nucléaire de 4e génération, F. Gauché, Clefs CEA, 61 (2013)
(9) Les chimistes dans : le monde de l’énergie nucléaire, série Les chimistes dans… Mediachimie.org
Crédit illustration : Sfen, reproduit avec l'autorisation de la Sfen, de la page Quelle est la différence entre un neutron lent et un neutron rapide ? site sfen.org