- Événements
mediachimie

Un match, deux mi-temps, trois aléas

Dimanche 19 juin un match décevant par son score, mais pas par ses surprises « chimiques ». Ça commence avec la pelouse, puis les maillots et enfin le ballon Beau Jeu. La pelouse du stade Maurois de Lille n’est pas
...

Dimanche 19 juin un match décevant par son score, mais pas par ses surprises « chimiques ». Ça commence avec la pelouse, puis les maillots et enfin le ballon Beau Jeu.

La pelouse du stade Maurois de Lille n’est pas suffisamment belle selon l’UEFA, donc il faut la verdir. Repeindre son gazon c’est une mode qui nous vient des États-Unis depuis que la Californie a subi des étés très secs. C’est une société américaine qui commercialise un « law paint concentrate » qui, mélangé à de l’eau, est pulvérisé sur l’herbe jaunie. La composition est confidentielle, on sait seulement qu’elle est à base d’extraits d’algues et de tourbe, auxquels on ajoute des pigments organiques. C’est rapide, non toxique et écologique, puisque en période de sécheresse cela évite les arrosages et le gaspillage de l’eau. En France et en Europe, on utilise plutôt un chélate de fer (EDDHA, un sel de l'acide éthylènediamine dihydroxy phényl acétique) qui demande cependant plusieurs jours pour agir.

Plusieurs joueurs suisses ont dû changer de maillots, ceux–ci se déchirant avec entrain, l’avant-centre subissant trois changements. L’équipementier Puma explique qu’un lot fourni et fabriqué par un sous-traitant en Turquie est à incriminer. Il invoque lors de la fabrication des fibres, un problème de température, de pression et d’humidité. Les internautes de médiachimie.org ne sont pas étonnés car on sait grâce à « Chimie et Sport » qu’ils sont probablement en élasthanne–polyester avec l’avantage d’être élastique et doux comme « une seconde peau ». Mais certains polymères sont très sensibles à l’absorption d’eau et il faut les protéger de l’humidité lors de la fabrication.

Enfin cerise sur le gâteau, Beau Jeu notre « ballon chimique » explose lors d’un contact entre deux joueurs Griezmann et Behrami. Nous avons exposé récemment combien à lui seul il représentait une somme d’innovations. Les six pièces en polyuréthane (impranil) à la surface finement quadrillée, assemblées par soudure thermique, n’ont pas résistées aux crampons en composite carbone de notre joueur français. Une soudure a été déchirée et Beau Jeu s’est dégonflé comme une vulgaire baudruche.

Finalement n’est-il pas réconfortant que dans une compétition où tous les détails et la technologie doivent être réglés, l’incertitude du sport et l’influence humaine ont encore leurs places.

Jean-Claude Bernier
22 juin 2016

Ballon de l’Euro 2016
- Éditorial
mediachimie

Beau Jeu, un ballon chimique ?

437 grammes, 69 cm de circonférence, c’est « Beau Jeu » le ballon de l’Euro 2016. C’est le petit frère de « Brazuca », le ballon de la Coupe du monde 2014 au Brésil et de « Albert » à Londres en 2012 (1). Il est composé
...

437 grammes, 69 cm de circonférence, c’est « Beau Jeu » le ballon de l’Euro 2016. C’est le petit frère de « Brazuca », le ballon de la Coupe du monde 2014 au Brésil et de « Albert » à Londres en 2012 (1). Il est composé de six pièces de polyuréthane de type Impranil mais avec des nouveautés ;sur les cinq couches successives, l’une est faite d’une mousse avec des millions de sphères apportant une superbe élasticité (2).

Les ingénieurs et techniciens ont réussi à faire un ballon parfaitement rond en juxtaposant par thermosoudure six faces carrées à arêtes courbes en retrouvant le théorème mathématique d’Alexandrov-Pogorelov. C’est pourquoi on parle parfois du « ballon cubique » mais parfaitement sphérique. Cependant, pour avoir des trajectoires maîtrisées, la couche externe du ballon est faite de minuscules croisillons en polyuréthane sur un substrat spécial de polyester-coton (3). Un ballon de football n’adopte pas en général une trajectoire parabolique, mais triangulaire, dite « tartaglia », du nom d’un mathématicien italien Niccolò Fontana, dit Tartaglia (« Le Bègue »), car la frappe moyenne des joueurs internationaux implique une vitesse initiale du ballon de 80 à 90 km/h supérieure à la vitesse de lévitation. Pour éviter que le ballon ne « plane », les minuscules aspérités perturbent la trainée dans l’air et permettent aux joueurs adroits de faire tourner le ballon sur lui-même et d’atteindre la lucarne des buts en trompant les gardiens.

Il n’y a pas que le ballon qui mobilise la chimie (4), les chaussures des joueurs en sont un concentré. Elles doivent être légères et solides. La semelle est en fibre de carbone (5) sur laquelle les crampons sont directement moulés (6). La chaussure elle-même est en fibres de polyisocyanate ou de polyester tissées, montant parfois pour protéger la cheville (7), douce à l’intérieur, légèrement rugueuse à l’extérieur pour pouvoir imprimer au ballon l’effet de rotation voulu par le joueur. Les maillots et short eux-mêmes sont en fibres thermorégulées, certains comportent des parties élastiques qui mettent les muscles en micro-compression (8) en assurant un léger massage anti-fatigue (9). Les prochaines avancées informatiques dont sont déjà munies certaines équipes sont les exploitations de données. Le petit GPS dans le col du maillot et les microcapteurs physiologiques connectés (10) enregistrent en ligne des données (11) sur chaque joueur : déplacements, vitesse, rythme cardiaque, fatigue…

Vive l’euro 2016, chimique et électronique, mais in fine c’est le talent des joueurs qui nous régale.

Jean-Claude Bernier
Juin 2016

Quelques ressources pour en savoir plus :


(1) L’histoire d’Albert, le ballon de foot des jeux olympiques (vidéo, 8:14)
(2) Le plastique qui recycle le CO2 (vidéo, 6:11)
(3) Les matériaux composites dans le sport
(4) La chimie et le sport autour du monde
(5) Les allotropes du carbone : une grande famille
(6) Technologie et performance sportive
(7) Des textiles pour sportifs. Apport de la chimie pour améliorer confort et performances
(8) L’intelligence textile (vidéo, 7:14)
(9) Un tissu anti- courbature (vidéo, 7:18)
(10) Les polymères se réveillent pour l’électronique ! (vidéo, 31:44)
(11) Chemical World Tour 3 : nos tablettes un condensé de chimie !
 

@MSA / Fotolia
- Événements
mediachimie

L’Union des Industries Chimiques (UIC) tire la sonnette d’alarme

Pour les usines chimiques, le pétrole n’est pas seulement source d’énergie, c’est à 90 % une matière première. Les raffineries situées à proximité les alimentent en naphta, éthylène, propylène… qui arrivent par pipeline
...

Pour les usines chimiques, le pétrole n’est pas seulement source d’énergie, c’est à 90 % une matière première. Les raffineries situées à proximité les alimentent en naphta, éthylène, propylène… qui arrivent par pipeline en flux tendus. Avec les blocages à répétition des raffineries et des dépôts pétroliers les approvisionnements sont menacés. Le 27 mai, près de 40 usines étaient à l’arrêt, soit 15 % des sites de chimie de base en France. « Le manque à gagner en termes de production est évalué à 15 millions d’euros par jour. Pour la chimie, la facture s’élève déjà au minimum à 100 millions d’euros » estime Jean Pelin, directeur général de l’UIC.

Les groupes les plus fragiles risquent gros, comme le fabricant de PVC Kem One qui s’est engagé sur de gros investissements pour retrouver de la rentabilité. Total est très touché : sur ses cinq raffineries, seule l’une produit en débit réduit, les autres sont paralysées. Dans l’hexagone, seules trois raffineries fonctionnent, appartenant à Exxon.

Si la chimie de base ne produit plus, la situation se complique en aval dans l’industrie plastique ou automobile. Les usines chimiques proposent de plus en plus pour leurs clients des produits sur mesure pour les bouteilles, l’électroménager, les carrosseries, les tableaux de bord, les plastiques d’usage… Tous les acteurs de la chaine sont très dépendants les uns des autres.

Selon l’UIC, alors que la chimie occupe le premier rang des secteurs industriels exportateurs et alors que l’activité repartait bien, ces pertes de production ne se rattraperont pas. Il faudra revoir à la baisse le chiffre prévu de hausse de 1,9 % en 2016.

Jean-Claude Bernier
28 mai 2016

NdlR : voir les contributions des présidents de l’UIC sur mediachimie.org
-
Les défis d’avenir posés aux chimistes pour la protection de la santé et de l’environnement : le point de vue indutriel (Pascal Juery)
- Les entreprises de la chimie : des innovateurs au service de la lutte contre le changement climatique (Philippe Goebel)

Granulés et de comprimés de charbon actif
- Éditorial
mediachimie

Un charbon très tendance

Alors que les grands opérateurs d’électricité veulent arrêter les centrales thermiques au charbon et que les États jurent de ne plus les subventionner, le charbon (1) s’ouvre à une nouvelle carrière. Il ne s’agit
...

Alors que les grands opérateurs d’électricité veulent arrêter les centrales thermiques au charbon et que les États jurent de ne plus les subventionner, le charbon (1) s’ouvre à une nouvelle carrière. Il ne s’agit évidemment pas du même charbon, mais du charbon actif (2).

Le charbon actif est un carbone presque pur obtenu par carbonisation à haute température de 600 à 800 °C de produits végétaux, comme des coques de noix ou des bambous, et par, une seconde opération, pour ouvrir des pores par oxydation ménagée à la vapeur d’eau ou au CO2.

On trouve le charbon actif sous forme de poudre ou en grains, avec une propriété essentielle : la surface spécifique est très grande de 500 à 1500 m2 par gramme ! Cela lui donne un pouvoir d’absorption étonnant, largement utilisé pour la dépollution et la purification de l’eau (3). Les cartouches de certaines carafes en sont faites ; elles absorbent les ions clhorure Cl- et donnent un meilleur goût à l’eau potable (4).

On connaît aussi son utilisation en pharmacie (5) : le charbon médicinal est du charbon actif en granulés qui fait merveille contre les problèmes intestinaux, maux de ventre, ballonnements et diarrhée. C’est l’une des spécialités pharmaceutiques les plus anciennes (6). Mais aux États-Unis, et bientôt en France, on vante les mérites des cures au charbon. La « charcoal limonade » et les cocktails à la poudre noire font un malheur. Pour détoxifier l’organisme, nettoyer à fond les substances indésirables dans le sang et même éviter la gueule de bois après une soirée trop arrosée, les jus de fruits au charbon et les crèmes de légumes noircies sont très mode. Le pouvoir absorbant et son origine naturelle (7) font débarquer le charbon actif dans la cosmétique (8), il absorbe le sebum et impuretés de la peau. Le gommage au charbon est primeur chez les ados, les savons « charcoal » débarquent en France, préparez-vous en 2016 aux beautés charbonneuses !

Pr Jean-Claude Bernier
Mai 2016

Quelques ressources pour en savoir plus :

1) Charbon (le produit du jour de la SCF)
2) L’obtention de charbons actifs
3) L’eau, sa purification et les micropolluants
4) L’eau du robinet est–elle polluée ?
5) L’utilisation du charbon médicinal
6) Quelques spécialités pharmaceutiques centenaires
7) La nature pour inspirer le chimiste : substances naturelles, phytochimie et chimie médicinale
8) Chimie dermocosmétique et beauté
 


 

Hôtel des Invalides
- Éditorial
mediachimie

J’ai failli voir une course de formule E

Pour une fois qu’une course automobile se déroulait au pied de la Maison de la Chimie, j’ai réagi trop tard. Quinze jours avant le 23 avril, la billetterie des 20 000 places était fermée ! Le circuit dessiné en plein
...

Pour une fois qu’une course automobile se déroulait au pied de la Maison de la Chimie, j’ai réagi trop tard. Quinze jours avant le 23 avril, la billetterie des 20 000 places était fermée ! Le circuit dessiné en plein Paris autour des Invalides fait un peu moins de 2 km avec quatorze virages et devait être parcouru 45 fois pour une course de 87 km.

C’est la première fois que la très sérieuse FIA (Fédération Internationale de l’Automobile) organisait à Paris une course automobile qui compte pour le championnat du monde de F E (avec E comme électrique). Elle a rassemblé 18 monoplaces électriques capables de tourner à 225 km/h et qui atteignent 100 km/h en moins de 3 secondes. Plusieurs jours avant, un bitume (1) provisoire avait recouvert les plaques d’égouts et les pavés, et des vibreurs avaient été placés dans les virages. L’an passé, les bolides étaient semblables et fabriqués par une entreprise française : Spark Racing Technology. Cette année, seuls les châssis en aluminium et fibres de carbone (2) de chez Spark étaient communs. Les carrosseries, très profilées en composites classiques (3) et carbone-carbone (4), étaient au choix des écuries. Les moteurs électriques (5) d’une puissance de 230 à 270 cv étaient majoritairement fabriqués par McLaren Applied Technologies mais les motopropulseurs qui peuvent délivrer 150 kW en mode course et 180 kW en cours de « Fan Boost » étaient d’origines diverses. Le pack de batteries performantes (6) capable de stocker de l’ordre de 30 kWh est encore insuffisant pour la totalité du parcours ; aussi, à mi-course, les pilotes changent de monture. Les pneus de 18 pouces sont spécifiques (7), c’est Michelin qui les fournit.

Quatre écuries principales sont en compétitions : deux françaises, Renault et DS, et Venturi (Monaco), Audi Sport (Allemagne). De jeunes coureurs parfois aux noms célèbres conduisent ces bolides. Le podium du grand prix de Paris est :

  • 1er - Lucas di Grassi sur Schaeffler Audi Sport
  • 2e - Jean-Éric Vergne sur DS Virgin Racing
  • 3e - Sébastien Buemi sur Renault

Toutes ces nouvelles voitures de course sont bourrées d’innovation grâce à la chimie (8) et soyons sûrs que nous les retrouverons d’ici quelques année sur nos véhicules électriques.

Pr Jean-Claude Bernier
Mai 2016

Quelques ressources pour en savoir plus :

1) Les infrastructures des transports : les apports de la chimie dans les projets d’avenir
2) Les alliages d’aluminium pour l’allègement des structures dans l’aéronautique et la carrosserie automobile
3) Les matériaux composites dans le sport
4) Les composites carbone/carbone
5) Le moteur électrique comparés aux moteur thermique : enjeux et contraintes
6) Stockage de l’électricité : élément clé pour le déploiement des énergies renouvelables et du véhicule électrique
7) Le pneumatique : innovation et haute technologie pour faire progresser la mobilité
8) L’industrie chimique au service de l’automobile
 

Rizière
- Question du mois
mediachimie

Quel est le secret de la longévité de la muraille de Chine ?

Qui n’a pas entendu parler de la Grande Muraille construite pour empêcher les ennemis d’envahir la Chine sur sa partie nord ? Patrimoine mondial de l’UNESCO depuis 1987, la muraille de Chine a été construite de façon
...

Qui n’a pas entendu parler de la Grande Muraille construite pour empêcher les ennemis d’envahir la Chine sur sa partie nord ?

Patrimoine mondial de l’UNESCO depuis 1987, la muraille de Chine a été construite de façon continue du IIIe siècle avant J.-C. au XVIIe siècle après J.-C. Il s’agit de l’ouvrage architectural le plus important jamais construit par l’Homme, tant par sa longueur, par sa surface que par sa masse.

2300 ans de vie !!! Elle a résisté à des climats extrêmes et tremblements de terre… Des experts scientifiques ont analysé avec les moyens technologiques d’aujourd’hui le contenu des matériaux utilisés, et en particulier du mortier.

Les maçons chinois avaient-ils déjà épousé la blouse blanche du chimiste ?

À croire que oui, à la lumière des résultats surprenants. Le mortier était constitué d’un mélange déterminé de chaux et de riz gluant !!! Que se passe-t-il ?

  • La chaux est le parfait matériau recyclable avant notre ère ; le calcaire CaCO3 après pyrolyse perd son dioxyde de carbone et en présence d’eau donne de la chaux Ca(OH)2. Celle-ci à son tour, déposée sur le chantier perd son eau, fixe le dioxyde de carbone environnant et redonne du calcaire.
  • Le riz est constitué pour l’essentiel d’amidon, polysaccharide de grande taille et ramifié.
  • Dans le mélange riz-chaux, l’amidon du riz, par sa structure de filet de pêcheur, va contenir la chaux humide et lui permettre par la suite de « cristalliser » en calcaire en microstructures, voire nanostructures, au sein des filets.
  • Le tour est joué, la structure va se consolider dans le temps. L’armature de l’amidon va servir de support armé et invisible de maintien pendant des millénaires !!!

D’autres structures nous surprennent aussi par leur solidité :

  • Comment le Pont de Gard tient-il encore quelques deux mille ans après sa construction ?
  • Quel est le secret naturel de la solidité exceptionnelle de la carapace des crabes et des crustacés ?

Motif de l'amylopectine

Motif de l’amylopectine. L’amylopectine est un polymère ramifié qui avec l’amylose, un autre polymère, constitue l’amidon.

 

Constantin Agouridas

Biogaz
- Éditorial
mediachimie

Le biogaz, une énergie d’avenir ?

Le biogaz est le produit de la dégradation de matières organiques par des micro-organismes anaérobies (sans oxygène). Le gaz des marais, les produits gazeux de la fermentation des ordures ménagères et le gaz de fumier
...

Le biogaz est le produit de la dégradation de matières organiques par des micro-organismes anaérobies (sans oxygène). Le gaz des marais, les produits gazeux de la fermentation des ordures ménagères et le gaz de fumier sont différents exemples de biogaz. Le point commun est la présence de méthane CH4 (1) à des teneurs comprises entre 35% et 75%. On sait aussi que le méthane est un gaz à effet de serre qui a un forçage radiatif 25 fois plus élevé que le gaz carbonique CO2 (2). C’est pourquoi on impose aux décharges d’ordures ménagères fermées et recouvertes d’être munies d’un réseau de captage du gaz, soit brûlé en torchère, soit valorisé pour le chauffage urbain ou pour produire de l’électricité (3). En France il existe 243 installations de stockage de déchets non dangereux (ISDND) dont le potentiel énergétique annuel est estimé à 7 TWh, mais seules 68 valorisent le gaz pour une production inférieure à 4 TWh.

À côté de ces installations existent des méthaniseurs de fermentation industrielle (4). Ils mettent en œuvre la méthanisation des boues des stations d’épuration (STEP) (5), des effluents organiques des industries agro-alimentaires, des effluents et des déchets agricoles. Ces digesteurs industriels utilisent plusieurs types de bactéries, les mésophiles actives entre 30°C et 40°C, les thermophiles qui travaillent entre 50°C et 65°C. Les réactions commencent par la dégradation des sucres, des protéines, des lipides par des enzymes hydrolytiques (6). Elles se poursuivent avec la production d’acides gras et d’acide acétique par les bactéries acidogènes (7). Les bactéries méthanogènes prennent le relais et à partir de CH3-COOH, CO2 et H2 produisent le méthane CH4. Ces réactions sont très fragiles, elles nécessitent un contrôle soigné des intrants car des variations brutales peuvent bloquer la réaction et empêcher sa reprise.

En France, plusieurs freins, souvent économiques, ont été des obstacles à leur développement. Sur 19 500 stations d’épuration, seules 4000 sont de taille suffisante justifiant l’investissement d’un digesteur (8). La purification (9) et l’élimination du CO2, de H2S et des siloxanes (qui sont à l’origine de la formation de SiO2, véritable abrasif catastrophique pour les moteurs et turbines) pour obtenir 98% de méthane plombe la rentabilité. Malgré cela, la nouvelle loi de transition énergétique prévoit la création de 30 usines de méthanisation et 1000 méthaniseurs d’ici 2020 avec les subventions du fonds chaleur et du fonds déchets.

Pr Jean-Claude Bernier
avril 2016

Quelques ressources pour en savoir plus :

1) Méthane (produit du jour de la SCF)
2) Le dioxyde de carbone la molécule-clé de la chimie du développement durable
3) Le biogaz : un avenir pour les déchets ménagers ?
4) Faire du déchet une ressource, un enjeu pour l’industrialisation des filières et territoires en France
5) Biochimie naturelle et traitement de l'eau : de la chimie des écosystèmes et des cocktails…
6) Un exemple de réaction biochimique : les enzymes mènent la danse
7) Étude sur les mycodermes. Rôle de ces plantes dans la fermentation acétique
8) Responsable de production en biotechnologie (vidéo, 2:19)
9) Charbon actif et traitement des eaux

© Pierre JACQUET/CEA
- Éditorial
mediachimie

Les batteries sodium–ion

Des chercheurs français du réseau RS2E qui groupe des laboratoires publics du CNRS et du CEA avec des industriels ont dévoilé fin 2015 les premiers prototypes de batteries sodium-ion sous le format standard 18650 utilisé
...

Des chercheurs français du réseau RS2E qui groupe des laboratoires publics du CNRS et du CEA avec des industriels ont dévoilé fin 2015 les premiers prototypes de batteries sodium-ion sous le format standard 18650 utilisé notamment dans les ordinateurs portables. Cette information ne vous dit peut-être rien, mais sachez que dans le monde, de nombreux chercheurs planchent sur cette technologie alternative aux batteries lithium–ion (1). Ces dernières (2), fabriquées sur une invention française au Japon, en Corée et en Chine, à des centaines de millions d’exemplaires ont ce même standard sous la forme d’un cylindre de 1,8 cm de diamètre et de 6,50 cm de longueur.

Les batteries sodium–ion fonctionnent sur le même principe : les ions sodium comme le lithium migrent à travers un électrolyte d’une électrode à l’autre au gré des cycles de charge et de décharge, et s’insèrent en douceur dans les structures cristallines de l’anode et de la cathode (3).

Plusieurs années ont été nécessaires pour innover et miniaturiser les électrodes en films très minces qui s’enroulent les uns sur les autres. Des polyanions ont été essayés, phosphates-titanates ou phosphates-vanadates fluorés. De nouvelles anodes capables d’absorber le maximum de sodium et un nouvel électrolyte polymère (4) qui transporte les ions Na+ ont été trouvés. Les solutions retenues restent évidemment secrètes car la concurrence mondiale est féroce. On sait cependant déjà que la densité d’énergie de ces prototypes est de 90 Wh/kg, comparable à celle de certaines batteries au lithium (5) et que leur durée de vie dépasse 2000 cycles de charge–décharge.

La technologie sodium (6) qui avait été écartée au tout début des années 90, à cause d’une meilleure tension par cellule pour le lithium, qui, de plus, était plus léger, revient en force pour deux raisons :

  • le lithium est relativement rare et ses ressources sont limitées à quelques pays comme la Colombie, le Chili, la Chine, alors que le sodium est abondant dans la croûte terrestre et dans l’eau des océans (NaCl) (7) ;
  • le coût de cette technologie est bien plus faible, le carbonate de sodium est 50 fois moins coûteux que le carbonate de lithium et les batteries sodium ont un créneau superbe celui du stockage statique de l’énergie renouvelable (8).

Espérons que les industriels français et européens (9) sauront saisir l’opportunité, car c’est un marché potentiel de 80 milliards de dollars qui s’offre à eux.

Pr Jean-Claude Bernier
mars 2016

Quelques ressources pour en savoir plus :

1) Meilleurs matériaux pour batterie à ions Li. L’approche déductive et inductive du chimiste
2) Des batteries au lithium plus puissantes (vidéo, 8 :36)
3) La chimie dans les batteries
4) Les polymères se réveillent pour l’électronique !
5) Lithium–ion : de nouvelles batteries antiaériennes ?
6) Le sodium (produit du jour de la société chimique de France)
7) Les ressources minérales du futur sont-elles au fond des océans ?
8) Stockage de l’électricité : élément clé pour le déploiement des énergies renouvelables
9) Où travaillent les chimistes ?