- Événements

Partenariat entre la Fondation la Maison de la Chimie et la Fondation La main à la pâte

La Fondation de la Maison de la Chimie fait un don d’un million d’euros à la Fondation La main à la pâte pour promouvoir et développer l’enseignement de la chimie à l’école et au collègeDaniel Rouan, Président de la
...

La Fondation de la Maison de la Chimie fait un don d’un million d’euros à la Fondation La main à la pâte pour promouvoir et développer l’enseignement de la chimie à l’école et au collège

Daniel Rouan, Président de la Fondation La main à la pâte, et Bernard Bigot, Président de la Fondation de la Maison de la Chimie, ont signé ce 16 mai 2019 une convention de partenariat d’une durée de quatre ans.

Ce partenariat stratégique vise à impulser une dynamique ambitieuse pour développer à l’école et au collège un enseignement de la chimie vivant et attractif, favorisant chez les élèves le travail collaboratif, le questionnement, l’expérimentation, l’argumentation et le débat scientifique.

Il a pour objet la mise en place d’un programme quadriennal d’actions de formation continue en chimie pour les professeurs de primaire et de collège. Dans ce cadre, la Fondation de la Maison de la Chimie octroie à la Fondation La main à la pâte un don d’un million d’euros pour la période de réalisation du projet, couvrant les quatre années scolaires de début septembre 2019 à fin août 2023. Ce programme sera mené en étroite collaboration avec les Maisons pour la science, un réseau national coordonné par la Fondation La main à la pâte. Il s’appuiera notamment sur la pédagogie d’investigation développée par la Fondation La main à la pâte et sur les ressources pédagogiques de Mediachimie, le site d’information documentaire dédié à l’enseignement de la chimie développé depuis plusieurs années par la Fondation de la Maison de la Chimie.

Le programme de formation comprendra deux axes particuliers :

  • Un axe portant sur l’utilisation des outils numériques : des parcours de formation et d’auto-formation en ligne seront conçus et accessibles en libre accès pour outiller les enseignants du primaire et du collège sur des points du programme en lien avec la chimie, autour de cinq grands thèmes structurants : « matière et matériaux », « énergie », « chimie et sciences de la vie », « chimie verte et développement durable », « procédés chimiques ».
  • Un axe portant sur l’expérimentation et la mise en œuvre d’actions de formation innovantes dans les réseaux de La main à la pâte, notamment celui des Maisons pour la science. L’objectif est de mobiliser les professeurs sur les sujets de la chimie et de créer, ou renforcer, les liens entre enseignants et professionnels de la chimie autour de différentes thématiques.

Les premières réalisations seront disponibles dès la fin de l’année 2019.

A propos de la Fondation La main à la pâte

La Fondation La main à la pâte, fondation de coopération scientifique, a pour mission de contribuer à l’amélioration de la qualité de l’enseignement de la science et de la technologie au primaire et au collège, école du socle commun où se joue l’égalité des chances. Elle s’inscrit dans la continuité de l’opération La main à la pâte lancée en 1995 par l’Académie des sciences, à l’initiative de Georges Charpak, prix Nobel de physique en 1992. Elle vise à aider les enseignants à mettre en œuvre une pédagogie d’investigation permettant de stimuler chez les élèves esprit scientifique, compréhension du monde et capacités d’expression.

www.fondation-lamap.org

A propos de la Fondation de la Maison de la Chimie

La Fondation de la Maison de la Chimie, créée en 1927, reconnue d’utilité publique, a pour objectif de développer les relations entre savants, techniciens et industriels, et de contribuer à la promotion de la chimie et de ses applications, dans les domaines de la science et de l’industrie. Dans ce cadre, l’un des six axes d’actions de la Fondation consiste à « créer des outils éducatifs, pour découvrir de façon ludique la richesse des applications de la chimie et l’intérêt des différents métiers qui en découlent ».

https://maisondelachimie.com

 

Contacts presse

Fondation La main à la pâte
Cécile BEL
cecile.bel@fondation-lamap.org
01 85 08 94 90

Fondation de la Maison de la Chimie
Margaret Varkados Lemaréchal
m.varkados-lemarechal@maisondelachimie.com
06 19 12 17 86

- Éditorial
mediachimie

Les prix dissuasifs à la pompe annoncent-ils l’après-pétrole ?

Dans les années 1970 après le choc pétrolier, les prévisionnistes auguraient du « peak oil » (pic pétrolier) qui marquerait le moment où la production mondiale plafonnerait avant de diminuer en raison de l’épuisement des
...

Dans les années 1970 après le choc pétrolier, les prévisionnistes auguraient du « peak oil » (pic pétrolier) qui marquerait le moment où la production mondiale plafonnerait avant de diminuer en raison de l’épuisement des réserves mondiales. Cinquante ans après, alors que l’exploitation des huiles de schistes (1) américaines est passée par là, l’horizon du pic pétrolier a bien reculé, d’autant que les découvertes de gisements géants en Afrique, à Bahreïn, en Afrique subsaharienne, en Chine, en Alaska… se chiffrent à plus de 200 milliards de barils *.

En 2019, les prévisionnistes parlent maintenant d’un « peak oil demand » (pic de la demande pétrolière), c’est-à-dire que la consommation en pétrole diminuera avant que la production ne décroisse. Ainsi, la consommation, notamment en Europe, est de plus en plus sensibilisée par les alertes alarmistes sur le climat, les GES (gaz à effet de serre), les particules fines, la pollution et aussi par le prix des carburants à la pompe, ce qui nous incite à la diminution de l’usage des ressources fossiles.

Des faits et comportements nouveaux apparaissent. Alors que près de 60% du pétrole est encore consommé au niveau mondial par les véhicules particuliers et les transports (dont un peu moins de la moitié par nos véhicules particuliers et un peu plus par les autres transports), plusieurs pays annoncent la fin des véhicules thermiques d’ici 2040. Déjà, la réglementation européenne Euro 6 impose aux constructeurs des normes drastiques de consommation les obligeant à des prouesses techniques de « downsizing ** » et la mise sur le marché d’un nombre croissant de véhicules électriques (2). Certains gouvernements (France, Danemark) ne délivrent plus de permis d’exploration exploitation du pétrole sur leur territoire.

Même les compagnies pétrolières se diversifient en privilégiant d’abord le gaz, puis les énergies renouvelables (3). Shell annonce devenir un des premiers fournisseurs d’électricité. Total a racheté le fabriquant de batteries Saft (4) et vient d’investir sur l’emplacement de son ancienne raffinerie de Grande-Synthe les infrastructures test du projet BioTfuel destiné à l’élaboration de biocarburants de seconde génération à partir de biomasse lignocellulosique (5). Ceci-dit, même si en Norvège 60% des véhicules neufs sont électriques, il n’y a au monde en 2018 que 2,7 millions d’automobiles électriques sur le milliard de véhicules en circulation. Le calcul montre que l’électrification complète du parc mondial des véhicules particulier n’économiserait que 18 millions de barils/jour sur les 100 millions barils/jour actuels.

Pour la chimie et notamment la pétrochimie, les prévisions sont plus difficiles et suivant les agences intergouvernementales les chiffres varient. À partir du pétrole on extrait un certain nombre de produits :

  • en tête de colonne d’abord le méthane pour le formaldéhyde et l’hydrogène,
  • puis le butadiène pour les caoutchoucs, l’éthylène, le propylène, le butadiène pour les plastiques, les engrais et mousses isolantes,
  • viennent ensuite les aromatiques pour les polyesters, les polystyrènes et les produits de base pour les médicaments,
  • enfin les huiles et produits lourds.

Toutes ces fabrications utilisent environ 13% du pétrole, part qui pourrait monter à 22%, voire doubler, d’ici 2040 sans régulation comme par exemple l’interdiction mondiale des objets en plastique à usage unique et l’obligation planétaire du recyclage (6).

Pour les bâtiments, l’isolation et la réglementation thermique de la très basse consommation (BBC) va entrainer une baisse de la consommation du gasoil que l’on estime de l’ordre de 70 millions de TEP d’ici 2040.

La chimie verte aura aussi sa part dans l’économie des ressources carbonées fossiles. Arkema, par exemple, investit des centaines de millions en Asie pour sa 4e usine de polyamide fabrication à base de plante de ricin (7). La chimie végétale comme la chimie durable entrainera une baisse de la consommation d’énergie, de solvants et de déchets. Les procédés biotechnologiques se sont développés par crainte du manque de ressources fossiles mais aussi au début de notre décennie à l’approche de la barre des 120 $ le baril. Les procédés de fermentation bactérienne des sucres, des déchets végétaux et du bois pour la production d’isobutène matière première pour le caoutchouc et les plastiques ont été multipliés par des start-ups et les investissements de grands groupes, mais la chute du baril à 60$ a aussi fait chuter les espoirs des industriels confrontés à la concurrence et la compétitivité des mêmes produits issus de la pétrochimie (8). En Europe, on estime que les produits biosourcés, bien que ne représentant en 2019 que 3% du total des produits chimiques, ont un réel potentiel de progression. La condition est d’une part qu’ils présentent de meilleures propriétés et d’autre part de trouver des créneaux comme l’alimentation et la cosmétique où les consommateurs et les grandes enseignes demandent plus de « naturalité ».

Il est clair que toutes ces évolutions feront baisser les besoins mais il reste à prévoir la date à laquelle la courbe de consommation s’inversera et le « pic oil demand » interviendra. Les cabinets d’experts qui partagent cette analyse donnent une fourchette assez large : 2030 pour BP, 2050 pour l’AIE (agence internationale de l’énergie) avec des valeurs de production de 150 millions de barils/jour. Alors oui, au Japon la consommation stagne, l’Europe a réduit sa consommation de 4% en 5 ans mais le reste du monde l’a augmentée de 16%. L’accès à l’énergie, même chère, de plus de 5 milliards d’humains doit nous faire encore patienter de quelques dizaines d’années pour « l’après-pétrole ».

Jean-Claude Bernier et Catherine Vialle
Juin 2019

* Un baril est une unité de mesure pour le pétrole, qui vaut exactement 42 gallons américains, soit environ 159 litres.
** Le downsizing des moteurs vise à diminuer la cylindrée d’un moteur en gardant la même puissance finale et ainsi réduire la consommation.

Pour en savoir plus :
(1) Gaz de schistes : quels problèmes pour l’environnement et le développement durable ?
(2) L’industrie chimique au service de l’automobile
(3) Un exemple d’énergie renouvelable : l’essence verte
(4) Applications présentes et futures des batteries
(5) Des carbohydrates aux hydrocarbures
(6) Panique sur les déchets
(7) La grande aventure des polyamides
(8) Les variations de prix du baril et les énergies renouvelables
 

- Événements

Nouveau partenariat de Mediachimie avec Sup’Biotech, école d’ingénieurs en Biotechnologies

Les grandes branches des biotechnologies sont classées par couleur en Europe : les biotechnologies vertes concernent l’agro-alimentaire, les biotechnologies rouges touchent le domaine de la santé, les biotechnologies
...
- Événements

27 juin 2019 : Festival des couleurs à Saint-Véran

À l'occasion de l'année de la chimie, jeudi 27 juin 2019 aura lieu Le festival des couleursà la Maison du Soleil de Saint-Véran (site de la Maison du Soleil). Programme du Festival des couleurs 14h00 : De la couleur à
...

À l'occasion de l'année de la chimie, jeudi 27 juin 2019 aura lieu

Le festival des couleurs

à la Maison du Soleil de Saint-Véran (site de la Maison du Soleil).

Programme du Festival des couleurs

  • 14h00 : De la couleur à foison !
    Expériences chimiques époustouflantes avec Jean-Pierre Foulon : le volcan, les encres invisibles, la bouteille bleue…
     
  • 16h00 :  De quoi est composée la matière
    Le tableau de la classification périodique des éléments avec Jean-Claude Bernier;
     
  • À partir de 15h30 second groupe de manipulations, expériences…;
     
  • 18h00 : Les véhicules électrique pas si verts que ça
    Conférence de Jean-Claude Bernier
- Éditorial
mediachimie

La photosynthèse artificielle : une utilisation du dioxyde de carbone comme matière première

Non le gaz carbonique n’est pas un polluant, chimistes et biochimistes répètent à l’envie : le CO2 c’est aussi la vie ! (1) En effet si le carbone est l’élément essentiel du monde vivant, couplé à deux oxygènes et
...

Non le gaz carbonique n’est pas un polluant, chimistes et biochimistes répètent à l’envie : le CO2 c’est aussi la vie ! (1) En effet si le carbone est l’élément essentiel du monde vivant, couplé à deux oxygènes et caressant une feuille sous le soleil et en présence d’eau, il permet aux végétaux de produire des molécules organiques telles que les sucres et la cellulose, âmes de la biomasse. Cette réaction naturelle de la photosynthèse fascine depuis longtemps les chercheurs qui rêvent de la reproduire (2).

Depuis plus de vingt ans, l’imagination des électrochimistes a permis de belles avancées (3). Le schéma le plus efficient couple une cellule photovoltaïque (4) qui sous rayonnement solaire fournit des électrons à une cellule électrochimique qui oxyde l’eau à l’anode et réduit le CO2 à la cathode.

Plusieurs réalisations ont déjà vu le jour fournissant à partir du CO2 du CO, des alcools, des acides organiques et même du méthane. Les rendements ont été parfois très corrects et supérieurs à celui de la photosynthèse naturelle, mais ils nécessitent le plus souvent des matériaux peu abondants et coûteux - des semiconducteurs de type AsGa, des catalyseurs à base de métaux précieux (rhodium, iridium, platine…) - rendant ces cellules difficilement extrapolables à grande échelle.

Pour passer à une échelle industrielle, ces systèmes mimant la photosynthèse naturelle doivent remplir plusieurs conditions :

  • une réduction catalytique efficace du CO2 avec des électrocatalyseurs ne comportant pas de métaux rares ou chers (5) ;
  • un milieu électrolytique stable et de pH peu acide pour limiter la corrosion ;
  • un design de cellule avec une répartition des compartiments anodiques et cathodiques optimales pour éviter les pertes ohmiques ;
  • un couplage à un système photovoltaïque robuste et peu coûteux.

C’est ce qu’a réussi un groupe de chercheurs européens coordonné par le Laboratoire de Chimie des Processus Biologiques (LCPB) du Collège de France (*). Après des années de recherche ce groupe a mis au point un système comprenant :

  • une cellule d’électrocatalyse optimisée avec une distance anode-cathode réduite permettant un courant stable sous une tension inférieure à 3V ;
  • des solutions électrolytes peu corrosives comportant des concentrations stabilisantes de bicarbonate ou carbonate de cesium ;
  • des matériaux d’électrodes à base de cuivre où à la cathode sont présentes des couches d’oxyde Cu2O et CuO (6), la dernière montrant une structure dendritique nanostructurée poreuse ;
  • une cellule photovoltaïque originale constituée de pérovskite (7) de type CH3NH3 Pb I3-x Brx fabriquée simplement par multicouches fonctionnelles avec des éléments abondants.

En fonctionnement, sous un flux de gaz CO2, la réduction de ce gaz et l’oxydation de l’eau fournissent des mélanges d’hydrocarbures tels que C2H4, C2H6, et CO, H2 bases de la chimie organique. Le rendement calculé par rapport à CO2 est de 2,3% (plus élevé que les 1% de la photosynthèse naturelle). Ce qui est important à souligner est que ce nouveau procédé mêle au moins deux innovations :

  • une cellule électrocatalytique utilisant un métal abondant et très utilisé le cuivre
  • et un générateur photovoltaïque à base de pérovskite se fabriquant à température ordinaire par sérigraphie de multicouches de matériaux peu coûteux, dont la fabrication industrielle commence.

Bien sûr des études complémentaires de procédés sont à faire car la cellule fonctionne avec du dioxyde de carbone pur alors que dans l’atmosphère (8) il est dilué à 400 ppm. L’augmentation des surfaces de contact ou le captage et la concentration peuvent être des solutions futures pour le développement industriel (9). Alors on peut se mettre à rêver à une économie de carbone en cycle fermé, en imaginant que nos combustibles seraient issus du même dioxyde de carbone produit par leur combustion. Voilà une belle solution à l’épuisement des ressources carbonées fossiles.

Jean-Claude Bernier et Catherine Vialle
Mai 2019

 

Pour en savoir plus
(1) Le CO2, matière première de la vie (Chimie et … Junior)
(2) Que faire du CO2 ? De la chimie ! 1334
(3) Les nouvelles cellules solaires nanocristallines 242
(4) Le soleil comme source d’énergie – le photovoltaïque 268
(5) Énergie électrique et réduction du dioxyde de carbone : quels électrocatalyseurs ? 878
(6) Expérience de réduction de l’oxyde de cuivre II (The reduction of copper oxide) 987
(7) Cristaux, cristallographie et cristallochimie 934
(8) Atmosphère ! Atmosphère ! Alerte ! 1555
(9) Le dioxyde de carbone : enjeux énergétiques et industriels 875


(*) Low-cost high-efficiency system for solar-driven conversion of CO2 to hydrocarbons, Tran Ngoc Huan, Daniel Alves Dalla Corte, Sarah Lamaison, Dilan Karapinar, Lukas Lutz, Nicolas Menguy, Martin Foldyna, Silver-Hamill Turren-Cruz, Anders Hagfeldt, Federico Bella, Marc Fontecave, Victor Mougel, Proceedings of the National Academy of Sciences Mar 2019, 201815412
DOI: 10.1073/pnas.1815412116