- Éditorial
mediachimie

Plus de gaz… Plus d’engrais ?

La crise européenne sur le gaz naturel (le méthane) et sur l’énergie a ses plus vives répercussions sur l’industrie et notamment sur l’industrie chimique qui est énergivore. En effet, outre les besoins en électricité et
...

La crise européenne sur le gaz naturel (le méthane) et sur l’énergie a ses plus vives répercussions sur l’industrie et notamment sur l’industrie chimique qui est énergivore. En effet, outre les besoins en électricité et en chaleur pour les réactions chimiques industrielles, le gaz n’est pas seulement un carburant énergétique mais aussi une matière première pour des produits essentiels.

Prenons comme exemple la chaine des engrais azotés passant par le dihydrogène, l’ammoniac, l’acide nitrique et enfin les nitrates. En effet depuis la découverte du procédé industriel de synthèse de l’ammoniac dit Haber-Bosch en 1913, les engrais azotés ont permis à l’agriculture de multiplier les rendements agricoles notamment sur le blé et le maïs et aussi d’autres cultures vivrières, par un facteur 5 qui n’a pas été l’un des moindres à contribuer à l’augmentation de la population mondiale après 1920.

La synthèse de l’ammoniac, dont la réaction N2 + 3 H2 = 2 NH3, parait simple, exige hautes pression et température (300 bars ; 500°C), donc consomme de l’énergie électrique pour les compresseurs et de la chaleur pour le réacteur.

Mais il faut aussi préalablement produire le dihydrogène et le diazote ce qui s’accompagne de consommation de méthane et de formation de CO2. En effet le dihydrogène H2 est majoritairement issu de la réaction du méthane sur l’eau à haute température et le diazote N2 est obtenu en éliminant le dioxygène de l’air par combustion du méthane (réaction dont la chaleur est récupérée pour la réaction précédente). Le détail de ces réactions est consultable sur le site Mediachimie (1).

On peut aussi obtenir du dihydrogène par combustion partielle de charbon qui conduit à 1200°C au « syngas » (2) dont on peut séparer l’hydrogène. Ce procédé est notamment utilisé en Chine.

Dans le monde on fabrique près de 100 millions de tonnes de dihydrogène s’accompagnant hélas de l’émission de près de 1 milliard de tonnes de CO2 (3).

La fabrication des engrais azotés nécessite préalablement de transformer une partie de l’ammoniac en acide nitrique puis de faire réagir l’ammoniac avec une solution d’acide nitrique. On obtient du nitrate d’ammonium NH4NO3 pouvant être utilisé en solution ou en granulés (4). Un autre engrais utilisé largement est l’urée CO(NH2)2. On le fabrique industriellement par réaction de l’ammoniac sur CO2 à 180°C et sous pression de 150 bars en 2 étapes :

CO2 + 2 NH3 = NH2COONH4

suivie de NH2COONH4 = CO(NH2)2 + H2O   (5)

La consommation d’engrais dans le monde s’élève à près de 180 millions de tonnes dont environ 120 Mt azotés qui exigent, rien qu’en matière première, 72 Mt de gaz naturel. On estime que rien que la production de 170 Mt d’ammoniac est responsable de 2% des émissions de CO2 mondiales.

Des procédés plus propres ?

C’est alors qu’intervient la recherche de procédés alternatifs « plus propres ». On trouve alors plusieurs couleurs pour NH3 comme pour le dihydrogène (6) :

  • l’ammoniac « gris » par le procédé traditionnel Haber-Bosch issu du méthane ou d’hydrocarbures,
  • l’ammoniac « bleu » avec encore Haber-Bosch mais avec la capture du CO2,
  • l’ammoniac « vert » toujours Haber-Bosch mais avec de l’hydrogène obtenu par électrolyse de l’eau.

Pour l’instant seule une installation en Arabie Saoudite et un projet au Canada sont ou seront capables de fournir et commercialiser de l’ammoniac bleu qui, à cause du transport vers l’Europe, devient un peu gris-bleu !

Les deux plus importants producteurs d’ammoniac européens YARA et BASF penchent vers une solution de décarbonation en utilisant de l’hydrogène produit par des électrolyseurs proches des réacteurs d’ammoniac. Si l’électricité utilisée vient d’éoliennes alors il sera vert, si c’est de l’électricité issue du nucléaire il tendra vers le jaune. En fait techniquement on peut se passer de sources de méthane mais le problème est économique car l’ammoniac « vert » a un prix de revient lié au prix du MWh et est bien plus élevé que le « gris » sauf si le prix du gaz reste anormalement élevé.

La recherche pour des procédés « durables »

Y a-t-il des méthodes « douces » pour obtenir l’ammoniac ? Le principal problème chimique est de casser la molécule de diazote dont la liaison N≡N est particulièrement forte. Plusieurs recherches sont menées pour y parvenir, une équipe américaine a réussi à hydrogéner l’azote de l’air en solution grâce à un complexe hydrocarboné de zirconium. Des chercheurs de Rice University ont réussi par électro catalyse à produire environ 10 g d’ammoniac par heure à partir d’un catalyseur constitué de microcouches 2D de sulfure de molybdène où les atomes de soufre sont partiellement remplacés par du cobalt. Une autre équipe coréenne a simulé la même réaction d’un enzyme nitrogénase que certaines bactéries utilisent pour fabriquer l’ammoniac à partir de l’azote de l’air avec des feuillets de nitrure de Bore BN. C’est la même stratégie qu’a suivi une équipe de Montpellier en s’attaquant aux nitrates dispersés dans l’environnement pour les transformer par électro catalyse en NH3.

Ces réactions ont en commun de ne pas dégager de gaz à effet de serre (CO2) et aussi d’être à l’échelle du laboratoire capable de générer quelques grammes par heure. Il faudra encore des années avant qu’un procédé industriel robuste puisse concurrencer le procédé classique.

L’industrie européenne

Oui l’industrie de l’ammoniac en Europe est vitale. Le cours du gaz qui inférieur à 50 € le MWh en 2020 a dépassé les 300 € au plus fort de la crise en août 2022 pour revenir à des valeurs proches de 100 € pénalise fortement la production d’ammoniac et celle d’engrais azotés. Le nitrate et l’urée ont vu leurs prix multipliés par 3 entre 2021 et 2022 ce qui contraint les agriculteurs à diminuer drastiquement les intrants et même à les supprimer pour les petites exploitations avec des répercussions sur les rendements (7).

Même la chaine des constructeurs automobile est atteinte. Devant le prix du gaz et de l’énergie les chimistes européens ont partiellement arrêtés les unités d’ammoniac et réduit les fabrications d’au moins 30% d’où un manque d’urée pour la dépollution automobile (AdBlue) et industrielle. D’un point de vue plus général, la chimie européenne suivant la déclaration du président de BASF en Allemagne se pose la question de sa survie ou de ses délocalisations si la situation tendue sur l’énergie et le gaz perdure.

Jean-Claude Bernier et Françoise Brénon

 

Pour en savoir plus :
(1) Comment fabriquer des engrais avec de l’air ? La synthèse de l'ammoniac, Françoise Brénon (Réaction en un clin d’œil, Mediachimie.org)
(2) Comment fabriquer de l’essence avec du charbon ? La réaction de Fischer-Tropsch, Jean-Claude Bernier (Réaction en un clin d’œil , Mediachimie.org)
(3) Vision de l’hydrogène pour une énergie décarbonée, conférence et article de Xavier Vigor Colloque Chimie et énergies nouvelles, 10 février 2021
(4) Le nitrate d’ammonium, un engrais dangereux ?, Jean-Claude Bernier (éditorial, Mediachimie.org)
(5) La première synthèse organique, Marika Blondel-Mégrelis (Mediachimie.org)
(6) Qu’est-ce que l’hydrogène « vert » ?, Françoise Brénon (Question du mois, Mediachimie.org)
(7) Agriculture du futur : s’appuyer sur les savoirs et non sur les croyances, Jean-Yves Le Deaut, Colloque Chimie et Agriculture durable, un partenariat en constante évolution scientifique, 10 novembre 2021

 

Crédits : image d'illustration, licence CC0, PxHere

- Événements
mediachimie

La chimie recrute ?

La chimie est partout et emploie des opérateurs, techniciens, ingénieurs et docteurs dans de très nombreux secteurs d’activité, la chimie mais aussi la pharmacie, la cosmétologie, l’énergie, la plasturgie, la métallurgie,
...

La chimie est partout et emploie des opérateurs, techniciens, ingénieurs et docteurs dans de très nombreux secteurs d’activité, la chimie mais aussi la pharmacie, la cosmétologie, l’énergie, la plasturgie, la métallurgie, l’électronique, les matériaux, la protection des cultures et même dans la police scientifique… La chimie se diversifie dans la chimie du végétal, la biomasse, le recyclage, l’environnement, la santé…

Pour en savoir plus, vous pouvez consulter :

En recherche, en développement, en production, en commercial…, les compétences sont et seront encore plus recherchées au cours des prochaines années.

Lycéens et étudiants, vous qui décidez de vos choix futurs, découvrez les domaines d’activité en entreprise, les fonctions ou métiers associés ainsi que des vidéos dans l’espace Métiers.

Pour vous aider à trouver la bonne voie consultez :


Une rubrique « ? Métiers, des réponses à vos questions » complète les informations.
 

- Question du mois
mediachimie

Pourquoi réduire la consommation de sel dans l'alimentation ?

C’est un problème de santé publique et aussi de chimie analytique !  Nous avons besoin de sel (chlorure de sodium de formule NaCl) pour maintenir constant notre équilibre électrolytique : c’est-à-dire les rapports entre
...

C’est un problème de santé publique et aussi de chimie analytique ! 

Nous avons besoin de sel (chlorure de sodium de formule NaCl) pour maintenir constant notre équilibre électrolytique : c’est-à-dire les rapports entre les concentrations des différents ions (sodium, potassium, chlorure, calcium, magnésium, phosphate) et l’eau contenus dans notre organisme. Or on perd du sel dans l’urine et la sueur et c’est pourquoi nous devons consommer du sel. Si le sel est vital pour notre organisme un excédent de sel entraine une augmentation de la pression artérielle conduisant à des maladies cardiovasculaires et des AVC. Il est à signaler que l’organisme a besoin d’un minimum de sel pour bien fonctionner car si nous n’en absorbions pas du tout les effets de toxicité seraient les mêmes que ceux décrits lors d’une trop grande consommation. L’OMS recommande de diminuer la consommation de sel depuis une dizaine d’années pour atteindre un objectif de 30% de baisse en 2025.

Pour réduire la consommation en sel, il faut : i) diminuer la dose journalière qui est située actuellement entre 6,5 et 12,5 g de sel/jour, ii) réduire le taux de sel dans les aliments consommés, iii) réduire l’usage du sel de table, en ne dépassant pas le taux de 1,5 % en masse d’aliment, iv) abaisser l’optimum de préférence au goût en utilisant par exemple des arômes de cacahuète ou des ajouts d’herbes aromatiques (persil, basilic, origan… qui renforcent la perception du sel. Des tests sont actuellement en cours sur l’utilisation des différentes variétés de sel (sel fin, fleur de sel, sel micronisé) [1].

La saveur salée fait partie des cinq saveurs fondamentales dont l’amer, l’acide, le salé, le sucré et l’unami (qui vient du japonais : goût protéine des viandes). Leur carte de répartition n’est pas localisée dans des zones précises de la langue contrairement à une idée répandue jusque dans les années 70 [2]. La saveur salée est perçue par toutes les papilles de la langue par un mécanisme transmembranaire qui déclenche un influx nerveux transmis au cerveau nous permettant d’apprécier cette saveur. Les seuils de détection varient avec l’âge de 0,3 g/L pour les juniors à 0,8 g/L pour les seniors, sans différence observable entre les hommes et les femmes. Mais il n’y a pas que le cation sodium du chlorure de sodium qui est responsable de la saveur salée : l’ion potassium, le lithium (non consommable) et l’ion ammonium participent aussi à cette saveur. Le chlorure d’ammonium est utilisé dans les pays du Nord où les rennes sont domestiqués de cette manière car ils en raffolent !

Disposer de mesures précises de la teneur en sel de nos aliments est donc nécessaire.

Des observations qualitatives de fluorescence ont montré que le sel pénètre peu dans la viande grillée de bœuf mais assez profondément dans la chair du poulet cuit [1] .

Des mesures IRM (imagerie par résonance magnétique) issues de la résonance magnétique nucléaire (RMN) du sodium (23Na), nécessitant d’utiliser des champs magnétiques forts de l’ordre de 4,7 teslas (environ cent mille fois le champ magnétique terrestre !) permettent de doser avec une grande précision la teneur en sodium des aliments [1]. Par exemple on a pu mesurer exactement la quantité de sel dans des jambons après un séchage de plus de six mois (8 g de sel pour 55 g d’eau !) Mais cette méthode permet aussi d’obtenir une cartographie de la répartition du sel à l’intérieur des aliments (sans la destruction de cet aliment). Des carottes cuites dans des solutions classiques de cuisine ont été analysées et la concentration du sel au bord des carottes est égale à 7,2 g/L tandis qu’à l’intérieur de la carotte elle est deux fois plus faible ! Une étude plus fine des formes des spectres montre l’existence d’ions sodium libres mais aussi d’ions sodium liés aux molécules voisines contenues dans l’aliment, ce qui donne des informations sur la relation entre la saveur salée plus ou moins longue en bouche et la nature des aliments !

À noter que l’emploi du glutamate de sodium comme alternative au chlorure de sodium fait encore l’objet actuellement de travaux de recherche car il est responsable des saveurs : salée mais aussi unami !

Jean-Pierre Foulon et l'équipe Question du mois

 


Note : L’IRM du sodium est aussi utilisée avec succès pour doser les ions sodium dans le cerveau humain (travaux de recherche réalisés à l’hôpital de Marseille en 2022 !) permettant des diagnostics médicaux très précieux.

Pour en savoir plus :
[1] Comment réduire le sel dans notre alimentation ?  série de cinq conférences vidéos par H. This, C. Hugol-Gential, J.M. Bonny, T. Thomas-Danguin, J.P. Poulain, en libre accès sur le site de l’Académie de l’agriculture, séance 19/10/2022
[2] Le goût : de la molécule à la saveur, Loïc Briand, in La chimie et les sens (EDP Sciences, 2018) pp. 189-209 ; vidéo et chapitre du Colloque La chimie et les sens (22 février 2017).

 

Crédits : image d'illustration, licence CC0, PxHere

- Question du mois
mediachimie

Pourquoi utiliser de l’ammoniac ou de l’ammoniaque dans des applications domestiques ?

La molécule de formule NH3 appelée ammoniac(i) est un gaz, très soluble dans l’eau. On donne aussi le nom d’« ammoniaque » ou « solutions ammoniacales » à ses solutions aqueuses. La forme gazeuse est présente à l’état
...

La molécule de formule NH3 appelée ammoniac(i) est un gaz, très soluble dans l’eau. On donne aussi le nom d’« ammoniaque » ou « solutions ammoniacales » à ses solutions aqueuses.

La forme gazeuse est présente à l’état naturel lors de la décomposition de substances protéiques. 80% de sa production industrielle par le procédé Haber-Bosch(ii) sert à la synthèse des engrais.

Pour ce qui est des applications domestiques, on trouve la solution aqueuse en magasin de bricolage, dans les rayons de produits ménagers ou sur Internet, avec les informations d’utilisations suivantes « nettoyant, décapant », « dégraisse, détache les tissus, ravive les couleurs », « nettoyer les tapis et moquettes, nettoyer les surfaces vitrées… ». Il existe aussi des mélanges prêts à l’emploi.

En ce qui concerne le nettoyage de l’argenterie, l’utilisation des solutions d’ammoniac est discutable(iii).

La solution d’ammoniac est également une des composantes utilisée pour réaliser des « frisures permanentes » sur cheveux(iv), ou dans des colorations capillaires.

Les noms rencontrés sur les étiquettes du commerce

Ammoniaque alcali 22° baumé ; ammoniaque 13° ; ammoniac 13% ; ammoniaque alcali 13 % ; alcali 13% ; ammoniaque (ou ammoniac) alcali 22° hydroxyde d’ammonium ref alcali en solution à 20% (en poids d’ammoniaque dans l’eau).

Ces noms recouvrent-ils la même chose et quelles sont les significations de toutes ces informations ?

Que se passe-t-il lors de la dissolution de l’ammoniac gazeux dans l’eau ?

Lors de la dissolution du gaz ammoniac dans l’eau il s’établit un équilibre dont l’équation bilan (A) est la suivante :

(A) NH3 (aq) + H2O (l) = NH4+(aq) + OH-(aq)

Mais cet équilibre ne produit qu’une très faible quantité d’ions ammonium NH4+. Ainsi la solution contient très majoritairement des molécules d’ammoniac hydratées. Par exemple, pour 17 g de gaz ammoniac NH3 dissout dans 1 L d’eau cela conduit à l’équilibre à avoir 99,6 % sous forme NH3,aq(v). Il se forme seulement 0,4 % sous forme NH4+ et simultanément la même faible quantité d’ions hydroxyde OH-.


Ainsi écrire que l’ammoniaque (correspondant à l’ammoniac en solution) aurait pour formule chimique NH4OH est donc inexact et source d’erreur(vi). Cette formulation date du XIXe siècle(vii).

La solution aqueuse d’ammoniac est aussi une solution basique en raison de la présence des ions OH-(viii).

Le mot « alcali » a pris plusieurs définitions au cours des siècles. En tant qu’adjectif il signifie que le produit est une base forte et donc que sa solution a concrètement un pH allant de 10 à 14 selon sa concentration(ix), ce qui est le cas de la solution d’ammoniac. En tant que nom, « l’alcali » ou « alcali volatil » est synonyme de solution d’ammoniac. Ce terme est toutefois désuet.

Pourquoi l’ammoniac peut-elle retirer des taches de couleurs ?

L’ammoniac NH3 peut donner des complexes en s’associant aux molécules responsables de la tache et ainsi « l’encapsuler » ou faire passer sous forme ionique un colorant qui sera alors soluble dans l’eau. Son caractère basique participe aussi au processus de dégraissage.

Ces propriétés étaient utilisées dès l’Antiquité ! À Pompéi et dans la Rome antique il existait des ateliers de foulonnerie où l’on nettoyait les vêtements des dignitaires. Le linge était foulé avec les pieds par des esclaves dans des bacs contenant des argiles et de l’urine humaine récoltée dans la ville. En effet l’urine contient de l’urée qui se transforme en ammoniac grâce à une enzyme uréase (naturellement présente dans l’urine) selon :

(NH2)2CO (urée) + H2O → CO2 + 2 NH3


Précautions à prendre dans un usage domestique(x)

En raison de son caractère basique, il est conseillé d’utiliser des gants lors de la manipulation d’une solution aqueuse d’ammoniac et d’éviter le contact avec les yeux et les muqueuses.

L’odeur caractéristique de l’ammoniac ne vous échappera pas ! Au moment de manipuler ce produit il est vivement conseillé d’ouvrir les fenêtres pour aérer la pièce et d’éviter de respirer les vapeurs.

Ne pas stocker ni manipuler le produit près d’une source de chaleur, car NH3 dissous peut facilement redonner de l’ammoniac gazeux s’échappant du flacon.

Ne pas stocker la bouteille d’ammoniac à proximité d’une bouteille d’acide chlorhydrique (éventuellement possédée comme détartrant). En effet les vapeurs de NH3 comme celles de chlorure d’hydrogène (HCl) pouvant s’échapper des flacons donneront des cristaux blancs de chlorure d’ammonium(xi), qui se déposeront sur les bouchons. On peut observer que les grandes surfaces ne respectent pas toujours ces règles de stockage !

Dans diverses circonstances vous pouvez identifier la présence d’ammoniac. Par exemple :

  • L’ammoniac apparait dans des processus de fermentation réalisés dans l’industrie agroalimentaire. Ainsi les caves d’affinage du Comté se distinguent par une forte odeur due à des vapeurs d’ammoniac(xii).
  • Le Hákarl, plat traditionnel de l'Islande obtenu par fermentation de chairs de certains requins, a une odeur très forte due à la transformation in fine de l’urée en ammoniac, comme vu pour les urines grâce à l’action de l’uréase. La chair du poisson passe alors d’un pH 6 à un pH 9.
  • L’émanation de l’ammoniac gazeux a lieu également si on laisse vieillir trop longtemps certains fromages ou certains poissons et est associée de façon générale aux processus de putréfaction.

Pour en savoir plus sur la concentration des solutions vendues

Pour les étiquettes indiquant un pourcentage, il s’agit du pourcentage massique(xiii) correspondant au rapport entre la masse de la quantité d’ammoniac introduite(xiv) dans l’eau sur la masse totale de la solution obtenue. Donc l’information « solution à 13% » signifie que 100 g de solution contient 13 g de NH3.

Qu’est-ce que le degré Baumé ?

Il est étonnant de trouver encore une information en degré Baumé, unité exclue des unités légales françaises depuis 1961. À 20 °C, la correspondance entre la densité et les degrés Baumé (noté B) pour les liquides moins denses que l'eau (densité < 1) est : d = 140 / (B + 130). Cela donne pour la solution d’ammoniac à 22° d = 140/(22+130) = 0.921 et donc une masse volumique(xv) de 0,921 kg/L.

Les étiquettes au laboratoire de chimie

Dans les laboratoires de chimie l’étiquette indique un pourcentage massique, P, une masse volumique ρ en g par litre (g.L-1) et une masse molaire M en g par mole (g.mol-1). Ces 3 données permettent de déterminer la concentration molaire en ammoniac, [NH3,aq], exprimée en mol par litre (mol.L-1) ; la relation à utiliser est C = P* ρ /M où bien sûr la masse molaire de l’ammoniac est M = 17 g.mol-1 et non 35 g.mol-1, comme on le trouve de façon erronée sur certains flacons, sur des sites Internet grand public et même sur la fiche officielle associée à son numéro CAS(xvi) ! Cette masse molaire erronée provient de l’hypothèse fausse que l’ammoniaque aurait pour formule NH4OH(xvii).

Conclusion

Si l’ammoniac est connu depuis l’Antiquité par ses usages qui perdurent et satisfont les consommateurs, son identification ne date que de la fin du XVIIIe siècle et est due à Claude Louis Berthollet(xviii).

Et qu’en est-il des dénominations ammoniac ou ammoniaque et des formules chimiques NH3 ou NH4OH associées ? Cette chronique illustre que la chimie est une science étudiant des phénomènes complexes à modéliser dont l’interprétation ne fait pas nécessairement l’unanimité et évolue en fonction des connaissances.

Lydie Amann et Françoise Brénon et l’équipe question du mois

 

 

(i) du grec Ammoniakon, « de Ammôn », nom grec d'Amon, dieu égyptien, car on extrayait près du temple d’Ammon en Lybie un minerai nommé salmiac, qui libérait ce gaz. Le salmiac contient du chlorure d’ammonium NH4Cl.

(ii) Consulter Comment fabriquer des engrais avec de l'air ? La synthèse de l'ammoniac

(iii) Pour l’argenterie, le noircissement de l’argent étant lié à la formation de sulfure d’argent très stable, l’ammoniac ne suffit pas à le détruire par complexation. Pour en savoir plus :  Nettoyer l’argenterie par « une recette de grand-mère » : comment ça marche ?

(iv) Pour en savoir plus Pourquoi ça frise ou ça défrise ?

(v) Ce calcul résulte de la valeur de la constante d’équilibre


 

On notera que 17 g de NH3 correspond à 1 mol d’ammoniac soit environ la dissolution de 25 L de gaz à température ambiante.

(vi) Voir la bonne définition du Larousse https://www.larousse.fr/dictionnaires/francais/ammoniaque/2936

(vii) On lira avec intérêt cet article du Chemical Education Why We Are all Using a Nonexistent Substance: NH4OH

(viii) L’acidité et la basicité d’une solution aqueuse sont mesurées sur une même échelle par le pH, grandeur reliée à la concentration en ions H+aq par pH = - log[H+aq].

Les concentrations en H+aq et OH-aq étant toujours liées par la relation [H+aq] * [OH-aq] = Cte. On considère qu’une solution est basique si son pH est supérieur à 7 et acide si pH <7.

(ix) En prenant le même exemple que précédemment (cf. note v), le pH de cette solution vaut 11,6.

(x) On peut consulter la fiche de toxicologie de l’ammoniac sur le site de l’INRS ici.

(xi) La réaction mise en jeu est : HCl (gaz) + NH3 (gaz) → NH4Cl (s). À ce sujet consulter l’anecdote historique La chimie contre les mauvaises odeurs.

(xii) La teneur en ammoniac dans l’air y est de l’ordre de 23 ppm (partie par million en volume dans l’air (mL/m3) d’après le CIGC - Comité Interprofessionnel de Gestion du Comté).

(xiii) Pourcentage massique :

(xiv) Compte tenu de l’équilibre (A) très peu déplacé, la masse d’ammoniac introduite est quasiment égale à la masse de NH3(aq) à l’équilibre.

(xv) La masse volumique se calcule par la relation ρ = d*ρ(eau) sachant que ρ(eau) = 1 kg/L

(xvi) Le numéro CAS de la solution aqueuse est : 1336-21-6 et celui du gaz est 7664-41-7.
Il s’agit de son numéro d'enregistrement unique auprès de la banque de données de Chemical Abstracts Service.

(xvii) Exemple : Le chimiste dans son laboratoire prend une bouteille et étudie l’étiquette pour en connaitre les caractéristiques. Il lit par exemple : P = 28%  ρ = 0,90 kg/L  et M = 35,05 g/mol. Une autre bouteille donne les mêmes informations sauf au niveau de la masse molaire M = 17 g/mol.
Or, l’expression de la concentration molaire exprimée en mol /L a pour expression : C = P* ρ /M .
Ainsi, l’application numérique pour la bouteille 1 donne donc C voisine de 7,2 mol. L-1 et pour la bouteille 2 de 15 mol. L-1, le facteur 2 provenant du facteur 2 entre les 2 masses molaires. Pourtant les dosages acido-basiques de ces 2 solutions montrent que chacune des 2 bouteilles a une concentration en ammoniac NH3 voisine de 15 mol/L. L’erreur provient du fait que l’ammoniaque est assimilée à l’hydroxyde d’ammonium NH4OH en solution (d’où M = 14 + 16 + 5 = 35 g.mol-1) ce qui est erroné comme l’a montré l’étude de l’équilibre de dissolution dans lequel l’ammoniac reste essentiellement sous la forme NH3(aq).

(xviii) voir Berthollet et la découverte de la composition de l’ammoniac

 

Crédits illustration : DR. F. Brénon pour Mediachimie

- Éditorial
mediachimie

Des Nobels de chimie pour la chimie click !

L’américain Barry Sharpless (pour la seconde fois après ses travaux sur la catalyse en particulier de réactions stéréospécifiques d’époxydation, couronnés par le Prix Nobel en 2001 !), le danois Morten Meldal et
...

L’américain Barry Sharpless (pour la seconde fois après ses travaux sur la catalyse en particulier de réactions stéréospécifiques d’époxydation, couronnés par le Prix Nobel en 2001 !), le danois Morten Meldal et l’américaine Carolyn Bertozzi ont reçu le Prix Nobel de Chimie le 5 octobre 2022 pour « le développement de la chimie click et de la chimie bio-orthogonale » selon le communiqué de l’Académie Royale de Suède.

Qu’entend-on par chimie click ?

Il s’agit d’un concept simple envisagé par B. Sharpless au début des années 2000 : faire réagir deux molécules pour créer une liaison robuste, comme une ceinture de sécurité fait avec un « clic », pour reprendre la formulation du comité Nobel ; par exemple des réactions de cycloaddition mettant en jeu des molécules dipolaires 1-3 (les charges positives et négatives sont réparties sur trois atomes adjacents).

Parallèlement M. Meldal découvrait par hasard une réaction de cyclisation entre un alcyne (molécule à triple liaison carbone-carbone) avec une molécule dipolaire spécifique l’azoture (molécule à trois atomes d’azote) (i).Il généralisa alors en fonctionnalisant deux molécules l’une avez une extrémité azoture et l’autre avec une extrémité alcyne conduisant à des produits de cycloadditions variés. La réaction nécessite l’emploi d’un catalyseur à base de cuivre. Le rendement est quantitatif si on rigidifie l’alcyne dans une structure cyclique (cyclo-octyne) (ii).

Mais l’élément cuivre n’est pas très compatible avec des réactions dans les milieux biologiques in vivo et c’est là que C. Berzotti proposa en 2003 de fixer sur une molécule polymère de polysaccharide la partie azoture ce qui conduit à la réaction de cyclisation sans nécessité d’employer le catalyseur au cuivre !

Ce sont des réactions quantitatives (100% de rendement), rapides, très sélectives et surtout sans sous-produit ce qui correspond bien aux douze commandements de la chimie verte ! Elles sont souvent réalisées dans l’eau (donc pas de problème de toxicité ici !) et à température ambiante ou jusqu’à 37°C (température des êtres humains bien sûr !).

Qu’entend-on par chimie bio-orthogonale ?

C’est Carolyn Berzotti qui a introduit ce concept en 2003 et il faut comprendre par là qu’il s’agit de l’ensemble des réactions conduisant à la formation ou la rupture de liaisons au sein des milieux biologiques sans interagir (c’est le sens particulier du mot orthogonal ici !) avec les fonctions chimiques présentes dans des milieux complexes : intracellulaire, le sang ou même jusqu’à l’organisme tout entier. C. Bertozzi avec son équipe a généralisé la réaction entre des azotures et des alcynes greffés sur toutes les molécules type sucres d’un organisme vivant tels que les modèles du poisson-zèbre ou la souris en ajoutant sur les molécules des groupes fluorescents permettant de suivre l’évolution réactionnelle.

Cependant peu de réactions synthétiques sont vraiment bio-orthogonales et peuvent être réalisées dans un animal. Les réactions les plus courantes sont justement les cycloadditions entre les azotures et les cyclo-octynes !

La chimie bio-orthogonale peut alors conduire par ces réactions click à i) fonctionnaliser des matériaux tels que les NTC (nanotubes de carbone) ou des polymères pour créer des propriétés adhésives par exemple ii) des nouvelles stratégies thérapeutiques en construisant des médicaments in vivo et en contrôlant leur vitesse de libération dans des organes malades bien ciblés telles que des cellules cancéreuses.

Jean-Pierre Foulon
8 octobre 2022

 

(i) L’azoture a pour formule globale N3- et pour représentation

   (Wikimedia, domain public)

(ii) Cyclo-octyne

    (Wikimedia, domain public)
 

Illustrations et schémas disponibles sur http://nobelprize.org/
© Johan Jarnestad/The Royal Swedish Academy of Sciences

 

 

 

Pour en savoir plus
(1) Deux articles du numéro spécial de chemiobiologie de l’Actualité Chimique n° 468 de décembre 2021 :

(2) Reprogrammation de la réactivité du fer dans le cancer,  R. Rodriguez, article et conférence, colloque Chimie et Nouvelles thérapies du (13 novembre 2019)

 

Illustrations :

Portraits Carolyn R. Bertozzi, Morten Meldal, K. Barry Marshall © Nobel Prize Outreach. Ill. Niklas Elmehed. 

Autres illustrations © Johan Jarnestad/The Royal Swedish Academy of Sciences

- Événements
mediachimie

Fête de la science 2022

La Fête de la science 2022 se tiendra en France métropolitaine du 7 au 17 octobre et en Outre-mer et à l'international du 10 au 27 novembre sur la thématique du « Réveil climatique ». Mediachimie.org accompagne cette fête
...

La Fête de la science 2022 se tiendra en France métropolitaine du 7 au 17 octobre et en Outre-mer et à l'international du 10 au 27 novembre sur la thématique du « Réveil climatique ». Mediachimie.org accompagne cette fête et vous propose une sélection de ressources en relation avec cette thématique.

Découvrez les vidéos de la série « Des Idées plein la Tech » qui vous invitent dans des laboratoires de centres de recherche et d'entreprises innovantes :

Amusez-vous en testant vos connaissances avec nos QUIZ :

Vous vous posez la question : « Comment la chimie et ses métiers peuvent-ils contribuer à la lutte contre le changement climatique » ? Vous trouverez des réponses dans l’espace métiers :

Découvrez aussi des fiches Grand oral pour le Bac, issues du partenariat Nathan / Mediachimie qui abordent ce sujet :

La Fête de la science, ce sont également des milliers d'animations gratuites, partout en France. Les activités proposées par chaque région de France et d’Outre-mer sont consultables sur le site https://www.fetedelascience.fr/

 

Illustration : Capture écran. Twitter @FeteScience

- Éditorial
mediachimie

H₂O, la molécule vedette de l’été

La sécheresse qui a sévi en 2022 et les vagues de chaleur estivales ont entrainé cet été des évènements extrêmes et des manifestations « hypohydriques » que nous n’avions pas souvent connus. La plus spectaculaire a été
...

La sécheresse qui a sévi en 2022 et les vagues de chaleur estivales ont entrainé cet été des évènements extrêmes et des manifestations « hypohydriques » que nous n’avions pas souvent connus. La plus spectaculaire a été les nombreux départs de feux de forêts ou de broussailles facilités par une végétation asséchée mais aussi la faible croissance des cultures vivrières et le jaunissement des prairies que broutent les animaux, les coupures d’eau potables dans certains villages ruraux et les fissures apparues dans de nombreuses maisons individuelles bâties sur terrain argileux.

Tout ceci montre une fois de plus l’importance d’une molécule ; l’eau H2O indispensable à la vie quotidienne et à la vie tout court.

H2O l’indispensable

Notre corps est composé en moyenne à 65% d’eau (pour un adulte) (1). En cas de canicule il est indispensable de boire car si la teneur baisse de quelques % des troubles apparaissent. On peut être privé de nourriture pendant plusieurs jours mais pas d’eau. Toute activité physique nécessite une énergie chimique stockée dans notre corps sous forme d’une précieuse molécule l’ATP (2) qui se transforme en ADP en libérant de l’énergie PI utilisée par nos muscles. L’équation simplifiée dans un effort d’endurance (3) qui consomme du dioxygène est :

Glucose + O2 + ATP = PI +ADP + CO2 + H2O.

Lors d’un effort sportif on libère donc du CO2 mais aussi de l’eau. C’est pourquoi lors par exemple du tour de France les coureurs doivent boire beaucoup de litres d’eau car ils en perdent beaucoup sous forme de vapeur ou de sueur.

Cette eau essentielle à la vie combien en dispose-t-on ? Sur notre planète Terre, l’eau est essentiellement sous forme d’eau salée (97,5 %) et 70% de l’eau douce est sous forme de glace ou de neige. Pour l’humanité c’est bien sûr la ressource en eau douce qui est importante elle est de l’ordre de 35 millions de km3 dont la moitié est normalement accessible (4).

     

Peut-on craindre une pénurie ? Les experts de la FAO estiment les besoins à 14 000 km3/an soit moins de la moitié des ressources en eaux souterraines qui paraissent suffisantes surtout si on y ajoute une bonne fraction récupérable des 70 000 km3 eaux pluviales annuelles. Encore faut-il différencier la consommation de l’eau et son prélèvement. Pour faire tourner une turbine produisant de l’électricité l’eau prélevée à la rivière y retourne instantanément. En agriculture l’eau nécessaire à l’irrigation est consommée car elle passe dans la plante ou est évaporée.

Une végétation sans H2O

La photosynthèse utilisée par les plantes est une réaction d’oxydo-réduction utilisant l’eau et le dioxyde de carbone CO2 de l’atmosphère qui, sous l’action des photons venant du soleil, fabrique les réserves de la plante sous forme de molécules hydrocarbonées (ici le glucose).

La réaction globale peut s’écrire : 6 CO2 + 6 H2O + photons = C6H12O6 + 6 O2

La chlorophylle est le pigment de couleur verte des feuilles qui permet l’absorption des photons.

Lorsque l’eau vient à manquer les arbres avertis par leurs capteurs sécrètent de l’éthylène à partir d’un de leur acide aminé la méthionine et ne synthétisent plus la chlorophylle responsable de la couleur verte (5). D’où en cette période de sécheresse les couleurs jaunes des prairies et l’amoncellement de feuilles rouges ou marrons dans nos rues en pleine été plutôt qu’en automne.

Le manque d’eau limite également le rendement de la photosynthèse en diminuant les réserves de la biomasse en molécules hydrocarbonées sucres ou amidons d’où la maigreur des épis de blé et de maïs appauvrissant les récoltes de 2022.

H2O au secours des feux de forêts

Les végétaux asséchés sont des cibles choisies pour s’enflammer le plus souvent accidentellement. L’augmentation de la température et la pyrolyse des végétations entrainent l’émission de nombreux composés volatils. Sont présents des composés benzéniques et phénoliques et beaucoup de terpènes pour les pins sans compter l’émission forte d’éthylène en situation de stress hydrique et thermique qui transforme l’arbre en une torche enflammée (6).

Une fois de plus l’eau vient au secours de ces incendies. Lorsqu’on arrose les flammes avec de l’eau, celle-ci se vaporise en puisant des calories au foyer et grâce à sa chaleur latente de vaporisation élevée fait baisser la température de 750°C à 400°C. De plus la vapeur d’eau prive la combustion des composés carbonés de l’oxygène de l’air. Les célèbres Canadair© larguent sur le front de flammes 7 m3 d’eau avec des agents retardateurs tels que les polyphosphates ou argiles, des agents mouillants ou moussants comme l’hexylène glycol (ou 2-méthyl-2,4-pentanediol) qui isolent le végétal de l’air brulant environnant. La couleur rouge des largages est apportée par l’oxyde de fer (Fe2O3) en suspension pour que les avions suivants voient la trace de l’intervention précédente. Notons bien qu’une bonne pluie de 10 mm venue du ciel a bien plus d’efficacité car à elle seule elle représente 100 m3 d’eau par hectare.

Des conséquences du manque de H2O

Plus insidieux sont les effets de la sécheresse sur les réserves souterraines et les bâtiments. Lorsque les terrains souvent argileux sont très secs, ils deviennent durs et peu perméables car leur porosité diminue. En cas de pluie l’eau ruisselle et ne pénètre pas en profondeur pour rejoindre les nappes phréatiques et réserves souterraines qui s’épuisent ce qui entraine des coupures d’eau potable (7). Et comme souvent après les vagues de chaleurs surviennent des orages libérant des volumes de pluie importants en quelques heures qui provoquent par ruissellement des inondations en milieu rural comparables à celles des zones urbaines cimentées et bitumées. Plus grave aussi est la fissuration des habitations dont on dit que potentiellement 10 millions de foyers pourraient être touchés. Ceci est dû aux variations de volume de roches naturelles les argiles ou phyllosilicates lamellaires (8). L’exemple type est la montmorillonite Si4Al2O10(OH)2 où Al peut être partiellement substitué par Mg. La structure en feuillets s’équilibre électriquement alors avec des cations séparant les feuillets. Ces cations plus ou moins hydratés peuvent en fonction de l’hydratation faire varier les inter-distances entre 10 nm et 1000 nm. D’où une aptitude au gonflement et inversement au retrait lors d’une déshydratation qui peut provoquer des déplacements de terrain importants au gré des variations d’humidité. C’est ce qui arrive à nombre de maisons individuelles bâties sur des terres argileuses majoritaires en France.

Ces inconvénients et tracas ne sont rien comparés à ceux que subissent un milliard d’individus qui sur terre manquent d’eau potable et les 2 milliards qui en plus ne disposent pas d’installations de traitement des eaux usées… La chimie a encore beaucoup à faire !

Jean-Claude Bernier
Août 2022

Pour en savoir plus :
(1) Chez un nourrisson, l’eau représente 75 % de son poids total, chez l’adulte, elle descend à 65 % (soit par exemple 45 litres d’eau pour un homme de 70 kg).
(2) Optimisation des performances, complexité des systèmes et confrontation aux limites, in La chimie et le sport, collection Chimie et… junior (EDP Sciences) 2015
(3) Quelle chimie dans le sport ? Épisode 1 : le métabolisme énergétique aérobie , vidéo Blareaureau au labo - Mediachimie
(4) L’eau, un nouvel « or bleu », de J.-C. Bernier, L’actualité chimique n° 381 (janvier 2014) p. 4-5
(5) Pourquoi et comment les feuilles se colorent en automne et tombent en hiver ? de C. Agouridas et F. Brénon, Question du mois, Mediachimie.org
(6) La chimie des feux de forêts, de J.-C. Bernier, éditorial, Mediachimie.org
(7) L’eau, une ressource indispensable pour la ville, de A. Charles, A. Harari et J.-C. Bernier, série « Chimie et… en fiches », Mediachimie.org
(8) Cristaux, cristallographie et cristallochimie. Des symétries aux propriétés : fiche 4 - les systèmes monoclinique et triclinique, de A.Harari et N. Baffier, année de la cristallographie (2014), Mediachimie.org
 

Crédits :
Figures : DR Medichimie.org
Illustration : Pxhere / licence CC0 Domaine public Lien