- Question du mois
mediachimie

Pourquoi mon ballon s’envole ?

Un ballon de baudruche gonflé avec de l’hélium s’élève, contrairement à un ballon rempli d’air. Pourquoi donc ? Que contiennent l’air et l’hélium ?L’air est un mélange composé de 80 % de molécules de diazote N2 et de 20 %
...

Un ballon de baudruche gonflé avec de l’hélium s’élève, contrairement à un ballon rempli d’air. Pourquoi donc ?

Que contiennent l’air et l’hélium ?

L’air est un mélange composé de 80 % de molécules de diazote N2 et de 20 % de molécules dioxygène O2 (1). Le gaz hélium est constitué d’atomes d’hélium.

La densité des gaz

Il faut d’abord regarder les masses molaires (2). Exprimées en gramme par mole (g.mol-1), elles valent 1 pour l’hydrogène H, 4 pour l’hélium He, 16 pour l’oxygène O et 14 pour l’azote N, soit 32 pour O2 et 28 pour N2.

Les gaz vérifient une loi très importante : des volumes égaux de gaz différents à la même température et à la même pression contiennent le même nombre d’atomes ou de molécules (3) (mais n’ont pas la même masse).

Si on gonfle un ballon de baudruche standard de 28 cm de diamètre il contient environ 10 litres de gaz. Ainsi il y a le même nombre de molécules dans 10 litres d’air que d’atomes dans 10 litres d’hélium.

Concrètement, dans chacun de ces volumes, il y a 0,446 moles de gaz, à 0°C (273 K) et à la pression atmosphérique (1013 mbar). Pour l’air cela donne la répartition suivante : 0,357 moles de diazote et 0,089 moles de dioxygène (en utilisant la composition de l’air de 80 % de molécules de diazote N2 et 20 % de molécules dioxygène O2).

Compte tenu des masses molaires, 10 litres d’hélium ont donc une masse de 1,78 g et 10 litres d’air 12,9 g. 10 litres d’air sont ainsi 7,2 fois plus lourds que 10 litres d’hélium.

L’air est donc 7,2 fois plus dense que l’hélium.

 

La poussée d’Archimède

Un petit rappel : nous avons tous remarqué qu’un bateau flotte dans l’eau. Cela est dû à une force qui soulève le bateau et qui l’empêche de couler. Cette force s’appelle la poussée d’Archimède, qui existe dans l’eau, mais aussi dans l’air et pour tout fluide. La force qui fait tomber est le poids. Il est proportionnel à la densité du corps, à son volume et à l’accélération de la pesanteur.

La poussée d’Archimède, elle, est proportionnelle à la densité de l’eau, au volume immergé du corps, et à l’accélération de la pesanteur. On dit qu’elle est égale au poids du volume d’eau déplacé, mais elle est dirigée vers le haut.

Reprenons les ballons de baudruche de 10 L, contenant soit 1,78 g d’hélium, soit 12,9 g d’air.

C’est ici l’air extérieur qui exerce une poussée d’Archimède sur les ballons. Comme ils sont totalement immergés dans l’air et que leurs volumes sont identiques, la poussée d’Archimède qui les soulève est la même.

Le ballon contenant l’air subit une force d’Archimède égale au poids de l’air enfermé dans le ballon, alors il reste en suspension. Comme l’hélium est 7,2 fois moins dense que l’air, son poids est 7,2 fois plus faible que la poussée d’Archimède et le ballon s’élève.

En toute rigueur le ballon de baudruche a une masse d’environ 2 g. Donc le ballon rempli d’air tombe. L’ascension du ballon d’hélium est par contre peu affectée par ce poids supplémentaire.

Jusqu’à quelle altitude le ballon gonflé à l’hélium peut-il monter ?

Le calcul n’est pas facile, car il y a plusieurs facteurs qui interviennent. Avec l’altitude la pression de l’air et la température diminuent. Par exemple à 3000 m d’altitude la pression ne vaut plus que 701 mBar et la température -20 °C (253 K). Mais la densité de l’air diminue aussi donc il en est de même de la poussée d’Archimède.

Un calcul permet de montrer que le ballon peut atteindre 3000 m en 2 à 3 heures. Mais ceci reste théorique car le latex de la baudruche est perméable aux gaz légers. Ainsi un ballon gonflé à l’hélium se dégonfle en 10 à 12 heures et retombe donc à terre. Et n’oublions pas le vent qui peut perturber l’ascension !

Jean-Claude Bernier et Françoise Brénon

 

 

(1) En toute rigueur, l’air contient 78,08 % de N2, 20,95 % de O2 et moins de 1 % d'autres gaz.

(2) La masse molaire est la masse d’une mole. Mais qu’est-ce qu’une mole ? Les atomes ou les molécules étant infiniment petits et légers, nous nous ramenons à notre échelle en nous intéressant un très très grand nombre de ces atomes ou molécules. 1 mole contient environ 602 000 000 000 000 000 000 000 = 6,02 1023 atomes ou molécules.

(3) Il s’agit d’une loi fondamentale appelée loi des gaz parfaits. Elle s’exprime par la relation : pV = nRTp est la pression qui s’exerce sur le gaz, V le volume qu’il occupe, T la température et n la quantité de matière exprimée en mole. R est la constante des gaz parfaits.

- Question du mois
mediachimie

Pourquoi ça frise ou ça défrise ?

Vous vous êtes parfois demandés pourquoi et comment vos cheveux frisaient sous la pluie ou chez le coiffeur ? Voyons si la chimie peut répondre à vos questions. La structure du cheveuOn distingue trois parties dans le
...

Vous vous êtes parfois demandés pourquoi et comment vos cheveux frisaient sous la pluie ou chez le coiffeur ? Voyons si la chimie peut répondre à vos questions.

La structure du cheveu

On distingue trois parties dans le cheveu :

  1. la cuticule, partie externe qui ressemble à une surface d’écailles comme des tuiles imperméables qui protègent la tige du cheveu ;
  2. le cortex, formé de kératine sous forme de fibrilles d’environ 0,2 μm qui donnent au cheveu son élasticité et sa force (une mèche de 200 cheveux peut supporter la traction d’une masse de 10 à 20 kg) ;
  3. la région médullaire, partie creuse au centre de la tige du cheveu.

La kératine

La kératine est une protéine constituée d’acides aminés différents (1) reliés entre eux par une liaison dite peptidique ou amide (2). Cela crée des chaines polypeptidiques. Celles de la kératine du cheveu présentent une disposition spatiale particulière en hélices appelées α (3), qui s’associent entre elles et s’entrelacent. Cette cohésion est principalement due à des liaisons hydrogène (liaison H) entre les atomes H portés par les atomes d’azote et les atomes d’oxygène portés par les groupes carboxyles (4). Certaines parties des chaines présentent aussi des interactions électrostatiques entre les groupes carboxylates (R-COO-) chargés négativement et les dérivés aminés (R’-NH3+) chargés positivement. Ces interactions confèrent sa résistance à la kératine. Elles peuvent se rompre et se refaire réversiblement, permettant un « façonnage » du cheveu !

Parmi les acides aminés présents, la cystéine (5) qui possède une fonction thiol (SH), joue un rôle particulier. Des ponts disulfures (S-S) peuvent s’établir entre deux atomes de soufre de chaines différentes. Ces ponts disulfures résistent bien à l’étirement et contribuent à l’élasticité du cheveu.

Lissage et mise en plis

Modifier la frisure ou le lissage des cheveux, c’est modifier les liaisons entre les chaînes polypeptidiques. L’eau par exemple brise les liaisons H ; les atomes H de la kératine ont alors tendance à se lier plus facilement avec les atomes O de l’eau H2O (6). Le cheveu mouillé peut se distendre, être déformé ou lissé plus facilement. Il y a un glissement et un étirement provisoire des chaînes de kératine. En le séchant des liaisons H et des interactions électrostatiques se reforment à d’autres endroits. Le cheveu pourra garder sa nouvelle forme un certain temps.

Utiliser une laque ou un spray permet, en recouvrant d’une fine couche les cheveux, de les maintenir en forme et éviter que la pluie vienne friser la chevelure lissée ou détendre la mise en plis !

Provoquer une frisure « permanente »

Les cheveux vont subir deux types d’actions.
La première action consiste à casser les ponts S-S par une réduction en milieu basique. Les chaines polypeptidiques sont alors relâchées. Les cheveux peuvent être enroulés à volonté, étirés et lissés. Les atomes de soufre des différentes chaines se retrouvent alors dans une nouvelle disposition.

La deuxième réaction va consister en une oxydation permettant de créer de nouveaux ponts disulfures fixant ainsi la nouvelle frisure ou le lissage recherchés.

Les shampoings, après-shampoings, démêlants et autres produits capillaires ont des formulations très complexes pour améliorer entre autre la souplesse, le démêlage et la brillance. Leurs actions consistent toujours à modifier les interactions des chaines polypeptidiques de la kératine entre elles.

Françoise Brénon

 

(1) Un acide aminé a pour formule générale R CH(NH2) COOH

(2) La liaison peptidique ou amide présente l’enchaînement suivant d’atomes :

(3) La laine est également constituée de kératine α. Il existe une autre forme spatiale de la kératine dite en hélice β, que l’on rencontre dans la soie.

(4) Schéma de la liaison H symbolisée par le pointillé

(5) La cystéine contient un atome de soufre en plus des fonctions amine et acide carboxylique HS-CH2CH(NH2)-COOH

(6) Schéma de la liaison H entre l’eau et le groupe amine :


 

- Question du mois
mediachimie

Dans quoi boire le champagne ?

Nous avons vu en décembre que le champagne contenait du gaz carbonique sous pression qui ne demandait qu’à se libérer sous forme de bulles qui remontent doucement à la surface du vin et participent à l’effervescence
...

Nous avons vu en décembre que le champagne contenait du gaz carbonique sous pression qui ne demandait qu’à se libérer sous forme de bulles qui remontent doucement à la surface du vin et participent à l’effervescence joyeuse, synonyme de fête. Le verre dans lequel on boit le champagne doit répondre par son élégance à l’image de prestige de ce breuvage mais aussi permettre d’en apprécier toutes les qualités.

Éviter le métal

Il existe pour boire le champagne des récipients en métal précieux, argent ou métal doré, mais ils ne conviennent pas car on ne peut ni observer la couleur du vin, ni la finesse du dégagement des bulles.

Les arômes tant appréciés

Les analyses ont montré que l’éclatement des bulles de gaz carbonique jouait un rôle majeur dans la libération des arômes. Ceux-ci sont des molécules organiques amphiphiles qui comportent soit une partie hydrophile qui les font rester majoritairement dans le vin, soit une partie hydrophobe qui les fixe de préférence à l’interface gaz–liquide de la bulle. Les analyses par IR-FT et SM (1) des aérosols de surface, comparées aux analyses du liquide in situ, ont montré des concentrations plus élevées d’acides gras ou de dérivés estérifiés tels que l’acide palmitoléique (2), l’acide tétradécanoïque (3) et d’autres, qui apportent les notes métalliques, fruitées, herbacées… Ces concentrations organoleptiques participent au plaisir olfactif puis gustatif du champagne.

D’où l’attention particulière à porter sur la nature du verre et à son nettoyage qui ont une grande influence sur la formation et la persistance des bulles qui sont de vrais ascenseurs à arômes.

Flûte ou coupe ?

La forme du verre à champagne doit être fonctionnelle. Les verres à fond rond ou les verres à fond pointu ne dégagent ni les mêmes mousses ni les mêmes lignes de bulles.

La flûte à champagne par sa hauteur de la colonne de liquide permet le bel examen visuel du vin et à la condition d’y laisser quelques microfibres, d’admirer la formation progressive de fines bulles. Si la flûte est suffisamment ouverte, le dégustateur peut y approcher le nez et goûter tous les arômes qui se dégagent de l’aérosol.

La coupe à champagne plus populaire dans les pays du sud est pourtant indéfendable. La mousse s’y forme mal et le bouquet se disperse. On y boit avec le nez qui trempe dans le breuvage et la surface liquide–air y est trop vaste, l’effervescence se calme trop vite.

C’est maintenant le verre « tulipe » à forme d’œuf tronqué sur une jambe pleine allongée qui a la côte. Il permet de jouir d’une mousse réduite et de la montée des fines bulles tout en permettant de respirer les arômes qui se dégagent en surface.

Fuyez la coupe ou flûte en plastique !

Faut-il rappeler le scandale qui est de boire le champagne dans une coupe en plastique ! Le PET (4) a une énergie de surface bien plus faible que celle du verre, la tension de surface liquide/solide y est très différente et sa surface est classée comme hydrophobe. Le liquide n’a pas tendance à s’y accrocher et ce sont les bulles qui le remplacent et grossissent sur les parois en cachant malheureusement la douce ascension des fines bulles.

Pour votre plaisir olfactif ou gustatif, choisissez bien votre matériel, mais dans tous les cas ne l’utilisez qu’avec modération !

Jean-Claude Bernier

 

 


(1) IR-FT : analyse par infrarouge à transformée de Fourier ; SM : spectrométrie de masse
(2) acide palmitoléïque acide (Z)-hexadéc-9-énoïque : CH3 –(CH2)5-CH=CH-(CH2)7-COOH
(3) acide tétradécanoïque CH3–(CH2)12–COOH
(4) PET : poly(éthylène-téréphtalate) polymère de motif répétitif -[O-(CH2)2-O-CO-paraPh-CO]n-

- Question du mois
mediachimie

Pourquoi y-a-t-il des bulles dans mon champagne ?

Le champagne est une boisson alcoolisée effervescente, elle est faite à partir de jus de raisins sucré. Sous l’influence de levures qui sont des champignons microscopiques, le sucre se transforme en alcool avec formation
...

Le champagne est une boisson alcoolisée effervescente, elle est faite à partir de jus de raisins sucré. Sous l’influence de levures qui sont des champignons microscopiques, le sucre se transforme en alcool avec formation de dioxyde de carbone et dégagement de chaleur. Après assemblage de vins « tranquilles » on fait la dernière fermentation à l’intérieur même de la bouteille. Après diverses opérations qui se terminent par la fermeture avec le fameux bouchon en forme de champignon, c’est la bouteille de champagne classique que nous connaissons et qui va être stockée 2 à 4 ans dans des caves immenses.

Réaction de transformation du sucre en présence des levures :

C6H12O6 → 2 C2H5OH +2 CO2 + Q (chaleur)

Pourquoi les bulles apparaissent-elles dans le verre ?

Dans la bouteille, le dioxyde de carbone se trouve en partie dissous dans le vin et en partie à l’état gazeux. Un équilibre s’établit et la pression du gaz est alors proportionnelle à la concentration en gaz dissous. Ainsi pour une pression de 5 à 6 bars, il y a environ 12 grammes de CO2 dissous, ce qui représente environ 6 litres susceptibles de s’échapper à l’état gazeux à pression et température normales.

Ainsi, quand on ouvre la bouteille, la pression diminue brutalement à 1 bar. Les 6 litres de CO2 dissous veulent s’échapper : c’est ce qui produit le bruit du bouchon qui saute et l’effervescence du vin. Quand on le verse dans le verre, les bulles de gaz carbonique naissent et montent dans le champagne.

Naissance des bulles

Le processus de formation des bulles qui contribuent au plaisir de ce vin de fête est intéressant. On estime qu’il y a par bouteille un potentiel de 11 millions de bulles ! Il y a nucléation, c’est-à-dire naissance d’une petite bulle microscopique, autour d’une petite poche d’air ou d’une microfibre. Elle grossit de quelques microns (millième de mm) à un millimètre et monte vers la surface à la vitesse de 15 cm par seconde. On recommande de servir le champagne à 7/8°C dans des verres assez hauts (des flûtes) qui ne viennent pas directement du lave-vaisselle mais qui ont été préalablement essuyés avec un torchon textile pour y laisser quelques fibres. Ces fibres serviront de germes pour la nucléation et permettront un dégagement harmonieux des bulles.

J’entends déjà les critiques qui disent que ces dégagements de gaz carbonique vont nuire au changement climatique !! Rassurons-nous ; chaque année 330 millions de bouteilles contenant chacune 12 g de CO2 sont ouvertes de par le monde. Au total cela représente le dégagement d’environ 3600 tonnes de CO2. Devant les émissions totales mondiales de 39 milliards de tonnes, ce n’est même pas le dix millionième de cette quantité !

Mais que cela ne vous empêche pas de boire le champagne avec modération !

Jean-Claude Bernier

 

 

Remarque : le dioxyde de carbone est aussi appelé gaz carbonique et a pour formule chimique CO2.

Prochaine question du mois : Dans quel verre faut-il boire le champagne ? (s’il en reste !)
 

Kopi luwak mangeant des cerises de caféier
- Question du mois
mediachimie

La chimie peut-elle libérer le chat Civette de son emprisonnement ?

Savez-vous que le café le plus cher au monde est produit grâce aux excréments d’un animal, la civette asiatique luwak (Paradoxurus hermaphroditus) ? Environ 36€ les deux tasses de café dans l’Etat de Massachusetts ! Le
...

Savez-vous que le café le plus cher au monde est produit grâce aux excréments d’un animal, la civette asiatique luwak (Paradoxurus hermaphroditus) ? Environ 36€ les deux tasses de café dans l’Etat de Massachusetts ! Le kilogramme sur le marché peut atteindre plusieurs milliers d’euros !

Quelles relations entre un certain café et la civette ?

Le café « Kopi Luwak » au goût si particulier est extrait des excréments de la civette. Ces animaux (petites créatures inoffensives entre la belette et le chat) mangent les fruits du caféier mais sont incapables d’en digérer les graines ; ces dernières sont alors excrétées après avoir macéré dans l’intestin de la civette.

Les sucs gastriques avec leurs enzymes et leur acidité ont débarrassé la graine de son amertume.

Une fois la graine de café épurée grâce aux sucs gastriques, il s’agit là de la première phase de la chimie, la graine va continuer les quelques mètres de chemin qui lui reste (7 mètres chez l’homme…) avant qu’elle soit restituée sur terre, prête à être ramassée, enrichie d’arômes apparentés au caramel qui vaudront à ce café le titre de boisson la plus chère au monde.

Civette, parfum et tabacs

Les civettes sont également recherchées pour leur musc, sécrété par les glandes anales, d’où l’ancien nom de « chat musqué ».

Chez la civette, la molécule chimique odorante est la civettone. Son parfum de musc ressort d’une façon intense, ce qui rejoint le profond de l’Homme dans sa culture et émotions. La civettone est aussi présente comme fixateur dans certains parfums pour homme. Elle est également utilisée dans la fabrication des cigares. C’est ainsi que de nombreux café-tabacs portent le nom de « La Civette » !

Envisager la synthèse chimique de la civettone

La synthèse de la civettone est possible à partir d’un précurseur contenu dans l’huile de palme et est déjà réalisée. Alors les chimistes pourraient-ils envisager de produire en quantité de la civettone et d’identifier les transformations subies par la graine de café pendant la digestion de la civette luwak ?

La contrepartie ne serait pas seulement la création de valeur et d’emplois mais aussi la libération de la Civette emprisonnée dans des enclos car il s’agit là de la « poule aux œufs d’or » pour les populations locales en Indonésie ou aux Philippines…

 

Constantin Agouridas

 

Civettone

Civettone.

 

 


 

Rizière
- Question du mois
mediachimie

Quel est le secret de la longévité de la muraille de Chine ?

Qui n’a pas entendu parler de la Grande Muraille construite pour empêcher les ennemis d’envahir la Chine sur sa partie nord ? Patrimoine mondial de l’UNESCO depuis 1987, la muraille de Chine a été construite de façon
...

Qui n’a pas entendu parler de la Grande Muraille construite pour empêcher les ennemis d’envahir la Chine sur sa partie nord ?

Patrimoine mondial de l’UNESCO depuis 1987, la muraille de Chine a été construite de façon continue du IIIe siècle avant J.-C. au XVIIe siècle après J.-C. Il s’agit de l’ouvrage architectural le plus important jamais construit par l’Homme, tant par sa longueur, par sa surface que par sa masse.

2300 ans de vie !!! Elle a résisté à des climats extrêmes et tremblements de terre… Des experts scientifiques ont analysé avec les moyens technologiques d’aujourd’hui le contenu des matériaux utilisés, et en particulier du mortier.

Les maçons chinois avaient-ils déjà épousé la blouse blanche du chimiste ?

À croire que oui, à la lumière des résultats surprenants. Le mortier était constitué d’un mélange déterminé de chaux et de riz gluant !!! Que se passe-t-il ?

  • La chaux est le parfait matériau recyclable avant notre ère ; le calcaire CaCO3 après pyrolyse perd son dioxyde de carbone et en présence d’eau donne de la chaux Ca(OH)2. Celle-ci à son tour, déposée sur le chantier perd son eau, fixe le dioxyde de carbone environnant et redonne du calcaire.
  • Le riz est constitué pour l’essentiel d’amidon, polysaccharide de grande taille et ramifié.
  • Dans le mélange riz-chaux, l’amidon du riz, par sa structure de filet de pêcheur, va contenir la chaux humide et lui permettre par la suite de « cristalliser » en calcaire en microstructures, voire nanostructures, au sein des filets.
  • Le tour est joué, la structure va se consolider dans le temps. L’armature de l’amidon va servir de support armé et invisible de maintien pendant des millénaires !!!

D’autres structures nous surprennent aussi par leur solidité :

  • Comment le Pont de Gard tient-il encore quelques deux mille ans après sa construction ?
  • Quel est le secret naturel de la solidité exceptionnelle de la carapace des crabes et des crustacés ?

Motif de l'amylopectine

Motif de l’amylopectine. L’amylopectine est un polymère ramifié qui avec l’amylose, un autre polymère, constitue l’amidon.

 

Constantin Agouridas

- Question du mois
mediachimie

Comment l'huile d'olive améliore-t-elle la fonction de nos viscères ?

Riche en acide oléique, un acide gras mono-insaturé (oméga-9), l'huile d'olive va interagir avec la partie de duodénum qui représente le début de l'intestin grêle. Une cascade d'événements moléculaires va conduire à la
...

Riche en acide oléique, un acide gras mono-insaturé (oméga-9), l'huile d'olive va interagir avec la partie de duodénum qui représente le début de l'intestin grêle. Une cascade d'événements moléculaires va conduire à la sécrétion d'une substance chimique de nature protéique qui est une hormone appelée cholecystokinine ( du grec « bouger la bile »).

Pour quelles conséquences ?

Le pancréas et la vésicule biliaire une fois l'ordre reçu, grâce à la cholecystokinine, vont à leur tour se mettre en position de bataille pour permettre une meilleure digestion des substances lipidiques. Des molécules dites lipolytiques, c'est-à-dire capables de permettre la digestion des lipides ingérés, sont alors déversées dans le suc gastrique.

De plus la vésicule biliaire va se mettre en contraction permettant une augmentation de la vidange biliaire, y compris de résidus de sels de cholestérol. Si cette vidange n’a pas lieu cela peut conduire, selon les individus, à des calculs biliaires. Ceci est particulièrement vrai pour des biles dites « paresseuses » ce qui permet une meilleure digestion, un bien-être, comme un contrôle physiologique du flux du cholestérol.

L'histoire ne s’arrête pas là…

Il reste encore tant à découvrir et à prouver

Il n’est pas un hasard que la médecine d'Hippocrate citait la mélancolie (en grec : avoir la bile noire) comme un trouble majeur des humeurs. Les philosophes et scientifiques ont ultérieurement repris ce terme pour parler de la tristesse, voire de la dépression sévère. On parle aussi du colérique ou de l'irascible comme étant un tempérament bilieux ou « on se fait de la bile » lorsqu’on est inquiet.

En quoi l'huile d'olive et sa chimie pourrait avoir un impact dans de désordres psychosomatiques de ce genre ? À suivre… 

Mais soyons Crétois le temps de comprendre…

- Question du mois
mediachimie

Le sang des animaux est-il toujours rouge ?

L’oxygène, carburant de la vie, étant peu soluble dans l’eau, il a fallu que la vie invente des molécules chimiques, véritables « camions transporteurs de l’oxygène », qui le transporte dans tous les tissus de l’organisme
...

L’oxygène, carburant de la vie, étant peu soluble dans l’eau, il a fallu que la vie invente des molécules chimiques, véritables « camions transporteurs de l’oxygène », qui le transporte dans tous les tissus de l’organisme via le réseau autoroutier de la circulation sanguine.

Ainsi chez les vertébrés, c’est l’hémoglobine qui fait office de camion transporteur. Il s’agit d’une protéine contenant en son sein un ion du fer (Fe2+), capable de fixer l’oxygène.

L’ensemble hémoglobine - oxygène forme un complexe qui donne au sang, sa couleur rouge vif.

Mais qu’en est-il des mollusques, homards et certains crustacés ?

Chez les invertébrés, certains mollusques, les arthropodes comme le poulpe (octopus) ou les crustacés et les limules, ce n’est plus l’hémoglobine mais l’hémocyanine qui fait office de camion transporteur. Cette protéine contient en son sein deux ions du cuivre (Cu2+), et non plus un ion du fer, capable de fixer l’oxygène.

L’ensemble hémocyniane - oxygène forme un complexe donnant au sang, une couleur bleu-vert (cyanos en grec).

Observations, adaptation et applications

La couleur bleue du homard résiste à la congélation mais disparait au profit du rouge quand on le plonge dans l'eau bouillante. L’octopus (poulpe), au sang bleu, s’adapte à la vie dans des eaux aussi froides que tempérées à chaudes. Les raisons en restent encore à determiner.

Grâce à la sécrétion d’une molécule protéique, le sang bleu des limules sait encercler l’ennemi et le gélifier sur place. Ainsi, ces animaux, qui ont peu évolué depuis 500 millions d’années, nous offrent leur sang pour vérifier la non-contamination bactérienne d’instruments médicaux ou de l’eau utilisée pour les dialyses.

Mais comment, alors qu’ils sont démunis de système immunitaire, ces êtres vivants ont-ils pu traverser sans encombre 500 millions d’années? Pourrait-on envisager d’autres domaines d’intérêt comme l’aide au diagnostic, la lutte contre des infections virales ou contre les cancers?

Et qu’en est-il chez l’homme ?

On disait que les nobles avaient le sang bleu. L’usage de la guillotine durant la Révolution française a fait tomber ce mythe. Ils avaient comme tout le monde un sang rouge !

Et quand l’homme ou le bébé est « cyanosé », il s’agit d’un manque d’oxygène. L’hémoglobine ne transporte alors plus assez d’oxygène et le sang prend alors une couleur bleue.

Constantin Agouridas


 

- Question du mois
mediachimie

Le pain complet au levain : meilleur ou pas pour la santé ?

Quelques notions sur la chimie du painLa farine de blé est composée pour l’essentiel, d’environ 70% d’amidon (glucides complexes à base de glucose), 10% de protéines (gluten) et de vitamines parmi lesquelles la vitamine E
...

Quelques notions sur la chimie du pain

La farine de blé est composée pour l’essentiel, d’environ 70% d’amidon (glucides complexes à base de glucose), 10% de protéines (gluten) et de vitamines parmi lesquelles la vitamine E est à la fois un anti-oxydant et est indispensable pour le système nerveux et musculaire.

Des éléments chimiques minéraux dits oligoéléments comme le magnésium, le potassium ou le sélénium sont aussi présents dans la farine de blé.

Ces derniers interviennent sur plusieurs fonctions physiologiques du corps humain parmi lesquels les équilibres cardiovasculaire, immunitaire et psychique. Ils participent à sa protection contre les radicaux libres intervenant dans le processus de cancérogenèse et responsables des phénomènes inflammatoires.

Et le levain dans tout ça ?

Le levain est une levure naturelle qui se développe dans un mélange de farine complète et d'eau, grâce aux bactéries présentes sur l’enveloppe du grain de blé. Celles-ci provoquent une fermentation s’accompagnant entre autre de la libération d’acides lactique et acétique.

Il y a plus de 70 familles de bactéries différentes, de compositions diverses, fonctions de facteurs tels que le lieu où le pain est fait, le degré d’hygrométrie, l’acidité, la température…

D’un point de vue diversités qui conduisent à des saveurs différentes, il y a de quoi épater les plus grands viticulteurs ! Comme la levure du boulanger, le levain va provoquer la fermentation de sucres avec comme conséquence le dégagement de dioxyde de carbone, lequel retenu par les couches de gluten (protéines) va aérer le pain.

En revanche le levain, grâce à son action spécifique différente de celle de la levure de boulanger, va de plus « découdre » par des enzymes (dites PHYTASES) les molécules chimiques complexes (dites PHYTATES), qui comme les filets du pêcheur emprisonnent les minéraux tels que le magnésium le potassium et le sélénium.

Les minéraux (oligoéléments), ainsi libérés, deviennent biodisponibles, traversent la barrière intestinale pour passer dans la circulation sanguine et provoquent les effets bénéfiques mentionnés.

Et c’est ainsi que le pain à base de farine de blé complet, fermenté avec du levain, devient plus digeste et apporte tous ses éléments bénéfiques avec de plus un degré de glycémie moindre.

BON APPÉTIT !

Constantin Agouridas


 

- Question du mois
mediachimie

Peut-on faire de bonnes confitures sans bassine en cuivre ?

Le fruit est principalement constitué de longues chaînes de molécules appelées pectines. Ces chaînes sont associées aux membranes de cellulose assurant la stabilité intrinsèque du fruit. Deux opérations sont à réaliser
...

Le fruit est principalement constitué de longues chaînes de molécules appelées pectines. Ces chaînes sont associées aux membranes de cellulose assurant la stabilité intrinsèque du fruit. Deux opérations sont à réaliser pour obtenir de la confiture : libérer les associations pectines-cellulose grâce à la chaleur et former des ponts entre les chaînes de pectines qui vont alors piéger les molécules d’eau de façon à obtenir un gel. Et c’est ainsi que l’on observe « la confiture prendre ».

Dans la pratique les recettes de confiture indiquent d’ajouter aux fruits du sucre, plus ou moins de jus de citron et de faire cuire fortement le tout, si possible dans une bassine en cuivre, bien propre.

La gélification après dissociation à chaud des chaînes de pectines

Mais que se passe-t-il donc ?

Pour avoir un bon gel il faut que les molécules de pectine soient reliées entre elles « par des ponts ». Les ponts sont essentiellement des liaisons hydrogène ou « ponts hydrogène ».

L’ajout de sucre a deux rôles. Le sucre fixe l’eau favorisant les ponts entre molécules de pectine au détriment des ponts entre l’eau et les pectines et permet d’augmenter la température de cuisson.

L’acidité naturelle des fruits ou du jus de citron ajouté favorise aussi la formation de ces « ponts hydrogène » en contribuant à mettre les pectines sous leur forme acide

Mais alors le cuivre dans tout ça ?

En milieu acide provenant des fruits ou du jus de citron ajouté, le cuivre est oxydé par l’oxygène de l’air en ion cuivrique (Cu2+). Ces ions favorisent la formation de ponts d’un autre type entre molécules de pectines et améliorent « la prise » de la confiture. Un inconvénient toutefois : les sels de cuivre sont toxiques à forte dose. Il faut donc utiliser une bassine en cuivre bien propre et décapée et éviter les vieilles bassines noircies ou ayant des traces de « vert de gris ».

Peut-on contourner l’usage d’une bassine en cuivre ?

C’est bien simple, remplacez la casserole de cuivre par une casserole en inox (inattaquable par les acides) et ajoutez des sels de calcium parfaitement inoffensifs qui joueront le même rôle que le cuivre et qui sont de surcroît excellents pour la santé ! On peut se procurer du carbonate de calcium sous forme de comprimés en pharmacie : il suffit de l’écraser dans un pilon pour en prélever une pincée.

Conclusion : au mélange fruits + sucre + eau dans la casserole en inox, ajoutez du jus de citron et … une pincée de carbonate de calcium.

 

Bonnes confitures et régalez-vous !
 

Constantin Agouridas