L'ouvrage La chimie dans les TIC (collection Chimie et ... Junior), écrit par une équipe Mediachimie composée de Constantin Agouridas, Jean-Claude Bernier, Danièle Olivier et Paul Rigny, a été retenu parmi les finalistes du 29e Prix Roberval, catégorie Jeunesse. Félicitations !
Ouvrage :
La chimie dans les TIC (Technologies de l'Information et de la Communication)
Editeur : EDP Sciences
ISBN : 978-2-7598-1675-0
Prix Roberval
Soutenu par la Délégation générale à la langue française et aux langues de France, le Conseil départemental de l'Oise, la ville de Compiègne, Sorbonne Universités, l’Université de Technologie de Compiègne (UTC), l’Agence Universitaire de la Francophonie et la Délégation Générale du Québec en France, le Prix ROBERVAL, organisé par le service des Cultures Scientifique, Technique et Industrielle de l’UTC, dirigé par Élisabeth Brunier, récompense chaque année des œuvres en langue française expliquant la technologie.
Ces œuvres récompensées sont destinées au grand public, à la jeunesse ou à l'enseignement supérieur et peuvent prendre la forme de livres ou de productions audiovisuelles.
Le prix est un hommage rendu à Gilles Personne de ROBERVAL, natif de l'Oise, génial inventeur de la balance qui porte son nom. C'est un bel exemple de technologie au service de tous.
Avez-vous fait provision de bois pour votre cheminée ? Car le Réseau de Transport de l’Électricité (RTE) vient de nous annoncer début novembre que la sécurité d’approvisionnement cet hiver 2016-2017 s’annonce délicat. Ce sont en effet 21 réacteurs nucléaires (1) qui étaient arrêtés dans l’hexagone au lieu de la dizaine habituellement stoppés pour maintenance ou rechargement de combustible (2). Dix-huit le sont à la demande de l’Autorité de la Sûreté Nucléaire (ASN) suite à la découverte d’anomalies de concentration de carbone dans les aciers (3) des parties basses des générateurs de vapeur.
Il faut d’abord dire que c’est suite à l’analyse des fonds de cuve et couvercle du réacteur EPR de Flamanville qu’ont été découvertes des ségrégations de carbone sur cet acier faiblement allié 16 MND5 (C≤0,2 % et Mn, Ni, Mo). Par la suite des contrôles sur les viroles basses des générateurs de vapeur notamment à Fessenheim, ont été aussi trouvées des concentrations supérieures de carbone sur des aciers faiblement alliés à peu près de même type. Au lieu de valeurs de l’ordre de 0,2 % des teneurs de 0,30 à 0,39 % ont été relevées au-delà de la valeur limite réglementaire de 0,32 %.
Il faut alors rappeler quelques souvenirs de métallurgie sur le diagramme Fe-C (4) et notamment les courbes TTT (Température, Temps, taux de Transformation) qui donnent les taux de ferrie, austénite et bainite liés aux valeurs de carbone stables en fonction des températures de traitement et vitesses de refroidissement. On conçoit qu’au cours du forgeage de lingots de plus de 100 tonnes les parties externes n’ont pas forcément la même courbe de refroidissement que celles du cœur. Celles-ci, plus lentes, peuvent donner lieu à transformation et donner une structure aciculaire avec peut-être de la cémentite (Fe3C) et donner une fragilité plus grande au choc mécanique ou thermique (5). Dans ces générateurs de vapeur, dans la virole basse, le choc thermique est possible car se rencontrent le circuit primaire (eau à 350°C) du réacteur et le circuit secondaire (eau 120 °C) de l’échangeur. Les tests de résilience dans ces parties basses ont donné des valeurs comprises entre 34 et 64 joules avec une moyenne de 52 J relativement satisfaisante, mais compte tenu des niveaux élevés de sécurité dans le nucléaire, des vérifications complémentaires sont en cours.
Déjà plusieurs réacteurs ont pu redémarrer ; RTE pour faire face aux pics de consommation cet hiver a plusieurs solutions : les échanges avec nos voisins grâce à l’interconnexion, les appels à l’effacement de gros consommateurs industriels, et d’autres mesures exceptionnelles pour éviter le « black-out » (6). Rassurons-nous et peut-être que l’hiver ne sera pas très rigoureux si on en croit le changement climatique (7).
Jean-Claude Bernier
novembre 2016
Quelques ressources pour en savoir plus :
(1) – La chimie et sa R et D dans l’industrie nucléaire
(2) – L’uranium (produit du jour la SCF)
(3) – Les enjeux de la chimie dans la production d’électricité
(4) – Site PhaseDiagram-Web
(5) – Chimie et construction navale
(6) – La chimie face aux défis de la transformation du système électrique
(7) – Chimie et changement climatique
Le colloque " Chimie et les Grandes Villes " a eu lieu mercredi 9 novembre 2016.
Retrouvez la captation vidéo des conférences sur le site des Actions de la Fondation de la Maison de la Chimie pour les visionner et les télécharger.
Créé par l’Union des Industries Chimiques (UIC) et la Fondation de la Maison de la Chimie, le concours The Chemical World Tour a pour but de faire découvrir l’industrie chimique et ses innovations à des étudiants. A la suite d’une sélection, 4 binômes d’étudiants – l’un en chimie et l’autre en journalisme- partent tourner des reportages, avec l’aide d’une équipe de l’agence Capa.
Cette année, le Chemical World Tour revient pour une 5ème édition Made in France consacrée à l’Industrie du Futur !
Le lancement de la sélection a eu lieu via la page Facebook de l’opération.
Cette année, le casting de type Nouvelle Star va laisser place à une sélection basée sur des candidatures vidéos et une annonce des lauréats via les réseaux sociaux.
Pour participer à la sélection et être parmi les reporters, les étudiants doivent envoyer une candidature vidéo (« Racontez-vous en 1 minute et dites-nous pourquoi vous rêvez de devenir journaliste ou chimiste ») accompagnée d’un CV et d’une fiche d’inscription dûment remplie et signée à l’adresse communication@uic.fr avant le 11 novembre 2016.
En savoir plus :
Vidéo de présentation de cette nouvelle saison
Deux annonces ont fait « la une » des journaux en octobre. La première plutôt mauvaise, la teneur en CO2 (1) de l’atmosphère avait atteint la valeur symbolique de 400 ppm (0,04%) ; la seconde plutôt bonne, un accord international signé à Kigali allait interdire l’usage des hydrofluorocarbone (HFC) comme gaz frigorigène.
Dans l’annonce sur la concentration de CO2, vous remarquerez que rien n’a été dit sur le méthane CH4 et les oxydes d’azote pourtant 20 fois et 120 fois plus actifs comme gaz à effet de serre que le CO2, sans parler des HFC 1400 fois plus actifs et dont l’utilisation croît de 10 à 15% chaque année comme fluide pour les installations industrielles et climatisations domestiques ou automobiles. L’accord de Kigali n’est finalement qu’un additif au protocole de Montréal de 1987 qui supprimait les chlorofluorocarbones (CFC), responsables du trou d’ozone. Depuis le trou d’ozone va mieux, mais pas la planète, car on ne connaissait pas à l’époque le pouvoir radiatif d’effet de serre de ses remplaçants, les HFC. Les scientifiques n’ont hélas pas encore trouvé le magique aspirateur à gaz carbonique. Par contre, les chimistes ont progressivement permis de comprendre le fonctionnement de la machine atmosphérique (2) et son influence sur le climat (3). Le CO2 n’est pas un polluant, car avec le rayonnement solaire et l’eau par photosynthèse il permet la croissance des plantes et la transformation de C et H en sucres. En se basant sur ce schéma naturel, le CO2 est une source de nouvelles molécules (4). C’est une nouvelle chimie qui se développe (5) ; avec des progrès sur la séparation, la purification et la catalyse, ces nouveaux défis énergétiques et industriels peuvent être vaincus (6). Ce n’est pas la seule contribution de la chimie à l’abaissement de la concentration en gaz à effet de serre et à l’assainissement de l’atmosphère, ne serait-ce que pour les oxydes d’azote (7) et sur la qualité de l’air à l’intérieur des maisons, parfois plus pollué qu’à l’extérieur (8). Après l’accord de Kigali, il faudra encore progresser dans la recherche de fluides frigorigènes, l’isobutane, l’ammoniac, les polyolesters et même le CO2, pour que leur utilisation ne rencontre pas les mêmes inconvénients et dangers que lors du remplacement des CFC.
Jean-Claude Bernier
novembre 2016
Quelques ressources pour en savoir plus :
(1) Le dioxyde de carbone (produit du jour de la SCF)
(2) La chimie atmosphérique : contexte, récents développements et applications
(3) Chimie atmosphérique et climat
(4) Que faire du CO2 ? De la chimie !
(5) Le dioxyde de carbone, la molécule-clé de la chimie du développement durable
(6) Le dioxyde de carbone : enjeux énergétiques et industriels
(7) La catalyse au service de l’automobile
(8) La qualité de l’air intérieur : enjeu de santé publique
Le salon Mondial de l’Automobile vient de se terminer à Paris. Il a marqué un tournant dans l’industrie automobile qui retrouve ses couleurs après quelques années noires. Les tendances et nouveautés qui ont illustré cette édition 2016 sont :
- l’innovation dans les véhicules électriques (1) qui gagnent en autonomie grâce aux progrès sur le stockage électrique ;
- le désamour pour les véhicules Diesel atteints par le « VWgate » et la difficulté pour les constructeurs de satisfaire les normes Euro 6 ;
- les préoccupations de plus en plus fortes des habitants des grandes villes qu’illustre la maire de Paris agissant pour limiter la pollution atmosphérique ;
- enfin la percée encore timide de l’automobile autonome et connectée.
Sur tous ces points l’innovation et les avancées ne seraient pas possibles sans la chimie. Les véhicules électriques ont atteint une maturité industrielle et une crédibilité commerciale grâce à l’allègement des structures (2) et une autonomie convenable grâce au stockage électrochimique et les nouvelles batteries (3). Si les véhicules Diesel veulent devenir « propres » et satisfaire d’ici quelques années aux normes drastiques d’émissions (4), ils en seront redevables aux chimistes catalystes qui développeront les nouveaux catalyseurs, filtres et systèmes de dépollution éliminant les particules et les oxydes d’azote (5) (6). Si demain vous conduirez votre auto avec votre smartphone, ce sera grâce à la miniaturisation des circuits électroniques et à la photogravure où la chimie est omniprésente (7) (8). L’air des villes que nous respirons est le résultat d’une chimie atmosphérique complexe (9) où les composés organiques volatiles, le CO2, les NOx et l’ozone jouent un rôle essentiel.
L’industrie automobile n’est plus seulement mécanique, elle est de plus en plus multi-matériaux, chimique et électronique. Elle embauche surtout des cadres et ingénieurs spécialistes de ces domaines (10) (11).
Jean-Claude Bernier
octobre 2016
Quelques ressources pour en savoir plus :
(1) La voiture électrique : virage ou mirage ?
(2) Les alliages d’aluminium pour l’allègement des structures de l’aéronautique et la carrosserie automobile
(3) Stockage de l’électricité : élément clé pour le déploiement des énergies renouvelables et du véhicule électrique
(4) Ach… VW Das Auto ?
(5) La catalyse au service de l’automobile
(6) Un exemple de matériau spécifique : pots catalytiques et dépollution automobile
(7) Chimie et nanolithographie (vidéo, 8:20)
(8) Les multiples contributions de la chimie dans la conception des tablettes et des smartphones (conférence, vidéo + texte)
(9) Chimie atmosphérique et climat (conférence, vidéo + texte)
(10) Ingénieur chimie des matériaux un métier de l’automobile (vidéo, 2:10)
(11) Assistant ingénieur (fiche métier)
À l’occasion de la Fête de la Science, l’Onisep, en partenariat avec la Fédération Française de Sociétés Scientifiques (F2S) et Médiachimie, lancent le site Pro2science. Ce site propose d’explorer une série d’objets de la vie quotidienne, porteurs d’innovation, pour établir des liens entre disciplines et découverte du monde économique et professionnel dans le cadre du parcours Avenir. Il vise aussi à promouvoir les métiers scientifiques.
Après plusieurs années où la chimie n’était vue qu’à travers la physique ou la biologie, le prix Nobel 2016 récompense des chercheurs chimistes au cœur de la chimie moléculaire. Le français Jean-Pierre Sauvage, l’écossais James Fraser Stoddart et le néerlandais Bernard L. Feringa ont réalisé tous trois d’étonnantes percées en topologie chimique, ouvrant le champ à la dynamique moléculaire. C’est dire qu’ils ont fabriqués des objets moléculaires de la taille du nanomètre (5000 fois plus petits que l’épaisseur d’un cheveu) (1), capables de se déformer sous une influence externe comme la lumière, un stimulus chimique ou électrique, de tourner sur eux même, d’avancer… On parle alors de machines ou moteurs moléculaires.
L’aventure commence pour Jean-Pierre Sauvage et son équipe en 1983, où ils réussissent à synthétiser le [2]caténane en 2 ou 3 étapes (2). L’astuce est en chimie moléculaire d’utiliser un métal, le cuivre, pour courber deux fils moléculaires et les faire s’enchevêtrer en deux anneaux qui s’interpénètrent. Plusieurs grammes sont ainsi préparés qui permettent l’étude de la structure et des propriétés. Ayant ouverts la voie de synthèses, plusieurs équipes se lancent dans ce domaine nouveau. L’équipe de Stoddart utilise les interactions π-π et les liaisons hydrogène pour les assemblages et fabrique un rotaxane (anneau autour d’un axe moléculaire), d’autres, les liaisons Pd – N dans les organométalliques.
En 1994, Jean-Pierre Sauvage arrive à créer un mouvement de « pirouette » sur un caténane en jouant sur l’état de valence du cuivre Cu+ et Cu++ qui fait que les anneaux basculent dans deux positions stables en fonction de l’apport ou du départ d’un électron sur le métal. C’est le premier moteur moléculaire. Les équipes de J. F. Stoddart et de B. Feringa montrèrent par la suite comment faire tourner puis se déplacer un anneau sur un axe, et même lui assigner deux positions distinctes (labélisées 0 et 1) ouvrant la voie à « l’ordinateur moléculaire ».
Jean-Pierre Sauvage rappelle souvent que ces objets artificiels miment des molécules du vivant (3). L’ATP synthase a un moteur rotatif qui synthétise l’ADP à partir des phosphates dans tous les organismes vivants (4). C’est dans l’ADN qu’on retrouve les nœuds entrelacés et les « trèfles » fabriqués par synthèse chimique. Les molécules créées, capables de se contracter et de s’étirer, simulent les mêmes mouvements que les molécules des fibres de nos muscles. Certaines machines moléculaires pourront peut-être à l’avenir transporter des agents thérapeutiques actifs jusqu’aux cibles tumorales. L’imagination des chimistes va jusqu’à fabriquer des roues pour des voitures de courses à l’échelle nanométrique (5).
Rappelons que ces travaux de pionnier ont valu à Jean-Pierre Sauvage de nombreuses distinctions : médaille d’argent du CNRS en 1988, prix Pierre Sue de la SCF en 2004, membre de l’Académie des Sciences et en 2014 Grand Prix de la Fondation de la Maison de la Chimie. Directeur de recherche émérite depuis 2014 et professeur émérite de l’université de Strasbourg, il travaille toujours au sein de l’ISIS (Institut de Science et d’Ingénierie Supramoléculaires).
Jean-Claude Bernier
7 octobre 2016
Quelques ressources pour en savoir plus :
(1) Les nano-objets : un avenir prometteur sous contrôle
(2) Les machines moléculaires (vidéo, 6:15)
(3) Conférence de Jean-Pierre Sauvage - Grand Prix de la Maison de la Chimie 2014 (vidéo)
(4) La fabrique des champions
(5) Nanocar Race : la course des plus petits bolides du monde