Hôtel des Invalides
- Éditorial
mediachimie

J’ai failli voir une course de formule E

Pour une fois qu’une course automobile se déroulait au pied de la Maison de la Chimie, j’ai réagi trop tard. Quinze jours avant le 23 avril, la billetterie des 20 000 places était fermée ! Le circuit dessiné en plein
...

Pour une fois qu’une course automobile se déroulait au pied de la Maison de la Chimie, j’ai réagi trop tard. Quinze jours avant le 23 avril, la billetterie des 20 000 places était fermée ! Le circuit dessiné en plein Paris autour des Invalides fait un peu moins de 2 km avec quatorze virages et devait être parcouru 45 fois pour une course de 87 km.

C’est la première fois que la très sérieuse FIA (Fédération Internationale de l’Automobile) organisait à Paris une course automobile qui compte pour le championnat du monde de F E (avec E comme électrique). Elle a rassemblé 18 monoplaces électriques capables de tourner à 225 km/h et qui atteignent 100 km/h en moins de 3 secondes. Plusieurs jours avant, un bitume (1) provisoire avait recouvert les plaques d’égouts et les pavés, et des vibreurs avaient été placés dans les virages. L’an passé, les bolides étaient semblables et fabriqués par une entreprise française : Spark Racing Technology. Cette année, seuls les châssis en aluminium et fibres de carbone (2) de chez Spark étaient communs. Les carrosseries, très profilées en composites classiques (3) et carbone-carbone (4), étaient au choix des écuries. Les moteurs électriques (5) d’une puissance de 230 à 270 cv étaient majoritairement fabriqués par McLaren Applied Technologies mais les motopropulseurs qui peuvent délivrer 150 kW en mode course et 180 kW en cours de « Fan Boost » étaient d’origines diverses. Le pack de batteries performantes (6) capable de stocker de l’ordre de 30 kWh est encore insuffisant pour la totalité du parcours ; aussi, à mi-course, les pilotes changent de monture. Les pneus de 18 pouces sont spécifiques (7), c’est Michelin qui les fournit.

Quatre écuries principales sont en compétitions : deux françaises, Renault et DS, et Venturi (Monaco), Audi Sport (Allemagne). De jeunes coureurs parfois aux noms célèbres conduisent ces bolides. Le podium du grand prix de Paris est :

  • 1er - Lucas di Grassi sur Schaeffler Audi Sport
  • 2e - Jean-Éric Vergne sur DS Virgin Racing
  • 3e - Sébastien Buemi sur Renault

Toutes ces nouvelles voitures de course sont bourrées d’innovation grâce à la chimie (8) et soyons sûrs que nous les retrouverons d’ici quelques année sur nos véhicules électriques.

Pr Jean-Claude Bernier
Mai 2016

Quelques ressources pour en savoir plus :

1) Les infrastructures des transports : les apports de la chimie dans les projets d’avenir
2) Les alliages d’aluminium pour l’allègement des structures dans l’aéronautique et la carrosserie automobile
3) Les matériaux composites dans le sport
4) Les composites carbone/carbone
5) Le moteur électrique comparés aux moteur thermique : enjeux et contraintes
6) Stockage de l’électricité : élément clé pour le déploiement des énergies renouvelables et du véhicule électrique
7) Le pneumatique : innovation et haute technologie pour faire progresser la mobilité
8) L’industrie chimique au service de l’automobile
 

Rizière
- Question du mois
mediachimie

Quel est le secret de la longévité de la muraille de Chine ?

Qui n’a pas entendu parler de la Grande Muraille construite pour empêcher les ennemis d’envahir la Chine sur sa partie nord ? Patrimoine mondial de l’UNESCO depuis 1987, la muraille de Chine a été construite de façon
...

Qui n’a pas entendu parler de la Grande Muraille construite pour empêcher les ennemis d’envahir la Chine sur sa partie nord ?

Patrimoine mondial de l’UNESCO depuis 1987, la muraille de Chine a été construite de façon continue du IIIe siècle avant J.-C. au XVIIe siècle après J.-C. Il s’agit de l’ouvrage architectural le plus important jamais construit par l’Homme, tant par sa longueur, par sa surface que par sa masse.

2300 ans de vie !!! Elle a résisté à des climats extrêmes et tremblements de terre… Des experts scientifiques ont analysé avec les moyens technologiques d’aujourd’hui le contenu des matériaux utilisés, et en particulier du mortier.

Les maçons chinois avaient-ils déjà épousé la blouse blanche du chimiste ?

À croire que oui, à la lumière des résultats surprenants. Le mortier était constitué d’un mélange déterminé de chaux et de riz gluant !!! Que se passe-t-il ?

  • La chaux est le parfait matériau recyclable avant notre ère ; le calcaire CaCO3 après pyrolyse perd son dioxyde de carbone et en présence d’eau donne de la chaux Ca(OH)2. Celle-ci à son tour, déposée sur le chantier perd son eau, fixe le dioxyde de carbone environnant et redonne du calcaire.
  • Le riz est constitué pour l’essentiel d’amidon, polysaccharide de grande taille et ramifié.
  • Dans le mélange riz-chaux, l’amidon du riz, par sa structure de filet de pêcheur, va contenir la chaux humide et lui permettre par la suite de « cristalliser » en calcaire en microstructures, voire nanostructures, au sein des filets.
  • Le tour est joué, la structure va se consolider dans le temps. L’armature de l’amidon va servir de support armé et invisible de maintien pendant des millénaires !!!

D’autres structures nous surprennent aussi par leur solidité :

  • Comment le Pont de Gard tient-il encore quelques deux mille ans après sa construction ?
  • Quel est le secret naturel de la solidité exceptionnelle de la carapace des crabes et des crustacés ?

Motif de l'amylopectine

Motif de l’amylopectine. L’amylopectine est un polymère ramifié qui avec l’amylose, un autre polymère, constitue l’amidon.

 

Constantin Agouridas

Biogaz
- Éditorial
mediachimie

Le biogaz, une énergie d’avenir ?

Le biogaz est le produit de la dégradation de matières organiques par des micro-organismes anaérobies (sans oxygène). Le gaz des marais, les produits gazeux de la fermentation des ordures ménagères et le gaz de fumier
...

Le biogaz est le produit de la dégradation de matières organiques par des micro-organismes anaérobies (sans oxygène). Le gaz des marais, les produits gazeux de la fermentation des ordures ménagères et le gaz de fumier sont différents exemples de biogaz. Le point commun est la présence de méthane CH4 (1) à des teneurs comprises entre 35% et 75%. On sait aussi que le méthane est un gaz à effet de serre qui a un forçage radiatif 25 fois plus élevé que le gaz carbonique CO2 (2). C’est pourquoi on impose aux décharges d’ordures ménagères fermées et recouvertes d’être munies d’un réseau de captage du gaz, soit brûlé en torchère, soit valorisé pour le chauffage urbain ou pour produire de l’électricité (3). En France il existe 243 installations de stockage de déchets non dangereux (ISDND) dont le potentiel énergétique annuel est estimé à 7 TWh, mais seules 68 valorisent le gaz pour une production inférieure à 4 TWh.

À côté de ces installations existent des méthaniseurs de fermentation industrielle (4). Ils mettent en œuvre la méthanisation des boues des stations d’épuration (STEP) (5), des effluents organiques des industries agro-alimentaires, des effluents et des déchets agricoles. Ces digesteurs industriels utilisent plusieurs types de bactéries, les mésophiles actives entre 30°C et 40°C, les thermophiles qui travaillent entre 50°C et 65°C. Les réactions commencent par la dégradation des sucres, des protéines, des lipides par des enzymes hydrolytiques (6). Elles se poursuivent avec la production d’acides gras et d’acide acétique par les bactéries acidogènes (7). Les bactéries méthanogènes prennent le relais et à partir de CH3-COOH, CO2 et H2 produisent le méthane CH4. Ces réactions sont très fragiles, elles nécessitent un contrôle soigné des intrants car des variations brutales peuvent bloquer la réaction et empêcher sa reprise.

En France, plusieurs freins, souvent économiques, ont été des obstacles à leur développement. Sur 19 500 stations d’épuration, seules 4000 sont de taille suffisante justifiant l’investissement d’un digesteur (8). La purification (9) et l’élimination du CO2, de H2S et des siloxanes (qui sont à l’origine de la formation de SiO2, véritable abrasif catastrophique pour les moteurs et turbines) pour obtenir 98% de méthane plombe la rentabilité. Malgré cela, la nouvelle loi de transition énergétique prévoit la création de 30 usines de méthanisation et 1000 méthaniseurs d’ici 2020 avec les subventions du fonds chaleur et du fonds déchets.

Pr Jean-Claude Bernier
avril 2016

Quelques ressources pour en savoir plus :

1) Méthane (produit du jour de la SCF)
2) Le dioxyde de carbone la molécule-clé de la chimie du développement durable
3) Le biogaz : un avenir pour les déchets ménagers ?
4) Faire du déchet une ressource, un enjeu pour l’industrialisation des filières et territoires en France
5) Biochimie naturelle et traitement de l'eau : de la chimie des écosystèmes et des cocktails…
6) Un exemple de réaction biochimique : les enzymes mènent la danse
7) Étude sur les mycodermes. Rôle de ces plantes dans la fermentation acétique
8) Responsable de production en biotechnologie (vidéo, 2:19)
9) Charbon actif et traitement des eaux

© Pierre JACQUET/CEA
- Éditorial
mediachimie

Les batteries sodium–ion

Des chercheurs français du réseau RS2E qui groupe des laboratoires publics du CNRS et du CEA avec des industriels ont dévoilé fin 2015 les premiers prototypes de batteries sodium-ion sous le format standard 18650 utilisé
...

Des chercheurs français du réseau RS2E qui groupe des laboratoires publics du CNRS et du CEA avec des industriels ont dévoilé fin 2015 les premiers prototypes de batteries sodium-ion sous le format standard 18650 utilisé notamment dans les ordinateurs portables. Cette information ne vous dit peut-être rien, mais sachez que dans le monde, de nombreux chercheurs planchent sur cette technologie alternative aux batteries lithium–ion (1). Ces dernières (2), fabriquées sur une invention française au Japon, en Corée et en Chine, à des centaines de millions d’exemplaires ont ce même standard sous la forme d’un cylindre de 1,8 cm de diamètre et de 6,50 cm de longueur.

Les batteries sodium–ion fonctionnent sur le même principe : les ions sodium comme le lithium migrent à travers un électrolyte d’une électrode à l’autre au gré des cycles de charge et de décharge, et s’insèrent en douceur dans les structures cristallines de l’anode et de la cathode (3).

Plusieurs années ont été nécessaires pour innover et miniaturiser les électrodes en films très minces qui s’enroulent les uns sur les autres. Des polyanions ont été essayés, phosphates-titanates ou phosphates-vanadates fluorés. De nouvelles anodes capables d’absorber le maximum de sodium et un nouvel électrolyte polymère (4) qui transporte les ions Na+ ont été trouvés. Les solutions retenues restent évidemment secrètes car la concurrence mondiale est féroce. On sait cependant déjà que la densité d’énergie de ces prototypes est de 90 Wh/kg, comparable à celle de certaines batteries au lithium (5) et que leur durée de vie dépasse 2000 cycles de charge–décharge.

La technologie sodium (6) qui avait été écartée au tout début des années 90, à cause d’une meilleure tension par cellule pour le lithium, qui, de plus, était plus léger, revient en force pour deux raisons :

  • le lithium est relativement rare et ses ressources sont limitées à quelques pays comme la Colombie, le Chili, la Chine, alors que le sodium est abondant dans la croûte terrestre et dans l’eau des océans (NaCl) (7) ;
  • le coût de cette technologie est bien plus faible, le carbonate de sodium est 50 fois moins coûteux que le carbonate de lithium et les batteries sodium ont un créneau superbe celui du stockage statique de l’énergie renouvelable (8).

Espérons que les industriels français et européens (9) sauront saisir l’opportunité, car c’est un marché potentiel de 80 milliards de dollars qui s’offre à eux.

Pr Jean-Claude Bernier
mars 2016

Quelques ressources pour en savoir plus :

1) Meilleurs matériaux pour batterie à ions Li. L’approche déductive et inductive du chimiste
2) Des batteries au lithium plus puissantes (vidéo, 8 :36)
3) La chimie dans les batteries
4) Les polymères se réveillent pour l’électronique !
5) Lithium–ion : de nouvelles batteries antiaériennes ?
6) Le sodium (produit du jour de la société chimique de France)
7) Les ressources minérales du futur sont-elles au fond des océans ?
8) Stockage de l’électricité : élément clé pour le déploiement des énergies renouvelables
9) Où travaillent les chimistes ?

 

Tractor spray fertilize field pesticide chemical
- Éditorial
mediachimie

Pourquoi tant d’ostracisme ?

Il n’est pas de semestre sans qu’une émission de télévision ne fasse monter la peur des produits chimiques chez nos concitoyens. Récemment « Cash investigation » sur France 2 traitait à charge le sujet des pesticides dans
...

Il n’est pas de semestre sans qu’une émission de télévision ne fasse monter la peur des produits chimiques chez nos concitoyens. Récemment « Cash investigation » sur France 2 traitait à charge le sujet des pesticides dans les eaux que nous, consommateurs, buvions, à la merci de « centaines de molécules toxiques provoquant cancers, malformations, troubles… » [sic]. La journaliste (très sympathique par ailleurs) aurait dû interroger d’abord les scientifiques (1) et chimistes analystes (2) qui traquent, analysent et éliminent les molécules pour le bien être de tous. Elle aurait pu savoir ainsi que les progrès des limites de détection dans l’environnement sont passées du milligramme/litre (10-3 g) en 1960 au nanogramme/litre (10– 9 g) en 2010 (équivalent à une goutte de coca dans une piscine de 25m x 10m), ce qui permet maintenant de détecter des centaines de molécules à des concentrations infinitésimales très largement en dessous des normes sanitaires.

Il existe bien sûr un problème dans l’agriculture et l’agrochimie (3). En s’attachant à plus de rigueur, le reportage aurait pu savoir comment le contrôle rigoureux de l’eau potable dose plus de 15 pesticides tous inférieurs à 10 ng sauf l’atrazine à 20 ng (4) et que la majorité des micropolluants aux concentrations 5 à 10 fois plus abondantes sont issus de notre activité humaine, métabolites ou molécules de médicaments que nous consommons (5) (6).

Les eaux de consommation et de l’environnement sont protégées par les chimistes qui s’investissent dans le suivi de la pollution aquatique (7) en France et en Europe. Sous l’égide de l’ONEMA (Office national de l’eau et des milieux aquatiques), le programme et la fédération AQUAREFF coordonnent la recherche des laboratoires du BRGM de l’INERIS, du CNRS et de l’IFREMER pour développer les méthodes physicochimiques et biochimiques d’élimination des micropolluants organiques (8).

Quelques jours plus tard, sur la même chaine en parlant de la meilleure santé de nos exportations en 2015 on célèbre la performance du champagne et du cognac, en passant sous silence la chimie qui a un bilan commercial bien plus flatteur, second après l’aéronautique. Sans doute que le « politiquement correct », la quête d’audience à 20h50 et passer sous silence les efforts d’amélioration de la qualité et de la surveillance de nos eaux priment sur l’indécence de parler des quelques nanogrammes dans l’eau des Français alors que 600 millions d’êtres humains n’ont même pas accès à l’eau.

Pr Jean-Claude Bernier
février 2016

Quelques ressources pour en savoir plus :
1) Ingénieur de recherche H/F (fiche métier)
2) Agent de laboratoire / Aide-chimiste (fiche métier)
3) La chimie en agriculture : les tensions et les défis pour l’agronomie
4) Quels sont les polluants de l’eau ?
5) Micropolluants chimiques dans l’environnement
6) Biochimie naturelle et traitement de l’eau : de la chimie des écosystèmes et des cocktails…
7) Les micropolluants dans les écosystèmes aquatiques : enjeux de la directive eau
8) L’eau, sa purification et les micropolluants
 

- Question du mois
mediachimie

Comment l'huile d'olive améliore-t-elle la fonction de nos viscères ?

Riche en acide oléique, un acide gras mono-insaturé (oméga-9), l'huile d'olive va interagir avec la partie de duodénum qui représente le début de l'intestin grêle. Une cascade d'événements moléculaires va conduire à la
...

Riche en acide oléique, un acide gras mono-insaturé (oméga-9), l'huile d'olive va interagir avec la partie de duodénum qui représente le début de l'intestin grêle. Une cascade d'événements moléculaires va conduire à la sécrétion d'une substance chimique de nature protéique qui est une hormone appelée cholecystokinine ( du grec « bouger la bile »).

Pour quelles conséquences ?

Le pancréas et la vésicule biliaire une fois l'ordre reçu, grâce à la cholecystokinine, vont à leur tour se mettre en position de bataille pour permettre une meilleure digestion des substances lipidiques. Des molécules dites lipolytiques, c'est-à-dire capables de permettre la digestion des lipides ingérés, sont alors déversées dans le suc gastrique.

De plus la vésicule biliaire va se mettre en contraction permettant une augmentation de la vidange biliaire, y compris de résidus de sels de cholestérol. Si cette vidange n’a pas lieu cela peut conduire, selon les individus, à des calculs biliaires. Ceci est particulièrement vrai pour des biles dites « paresseuses » ce qui permet une meilleure digestion, un bien-être, comme un contrôle physiologique du flux du cholestérol.

L'histoire ne s’arrête pas là…

Il reste encore tant à découvrir et à prouver

Il n’est pas un hasard que la médecine d'Hippocrate citait la mélancolie (en grec : avoir la bile noire) comme un trouble majeur des humeurs. Les philosophes et scientifiques ont ultérieurement repris ce terme pour parler de la tristesse, voire de la dépression sévère. On parle aussi du colérique ou de l'irascible comme étant un tempérament bilieux ou « on se fait de la bile » lorsqu’on est inquiet.

En quoi l'huile d'olive et sa chimie pourrait avoir un impact dans de désordres psychosomatiques de ce genre ? À suivre… 

Mais soyons Crétois le temps de comprendre…

- Éditorial
mediachimie

Les franciliens ont bien de la chance

Au moment où l’on parle abondamment d’emplois, de formation, d’orientation, les collégiens, les lycéens, les étudiants d’île-de France et leurs parents vont pouvoir se rendre au : Village de la chimie, des sciences de la
...

Au moment où l’on parle abondamment d’emplois, de formation, d’orientation, les collégiens, les lycéens, les étudiants d’île-de France et leurs parents vont pouvoir se rendre au :

Village de la chimie, des sciences de la nature et de la vie
Les 12 et 13 février – Parc Floral de Paris au Bois de Vincennes
http://www.villagedelachimie.org

L’édition 2016 du Village de la Chimie met quatre espaces à disposition des jeunes en recherche d’orientation et qui souhaitent mieux connaître les métiers :

  • Espace des professionnels : plus de 35 entreprises, start–ups et organismes sont présents pour expliquer et illustrer comment sur le terrain se déroulent et se vivent les métiers de la chimie, des sciences de la nature et de la vie.
  • Espace de la formation : les enseignants et responsables des filières de formation de 27 établissements détailleront pour vous les parcours qui conduisent aux métiers de la chimie : CAP, BTS, DUT, licences pro, écoles d’ingénieurs et doctorats, sans oublier les voies de l’apprentissage.
  • Espace des conférences : pendant deux jours vous pourrez entendre parler des innovations en chimie, en biotechnologie, en énergie et, plus intriguant de la chimie en cuisine et de la chimie pour résoudre les énigmes policières.
  • Espace de l’insertion professionnelle : des ingénieurs, des responsables des ressources humaines, des membres de l’UNAFIC et de la SCF sont là pour vous conseiller le meilleur parcours professionnel, pour l’entretien d’embauche, le curriculum vitae.

Venez en famille ou avec vos professeurs à Vincennes. L’industrie chimique emploie 200 000 chimistes et il y a plus de 300 000 autres chimistes dans les autres industries, comme la pharmacie, la métallurgie, les plastiques, l’automobile, l’électronique, les parfums et les cosmétiques,  qui représentent chaque année de nombreuses embauches.

Mediachimie.org sera aussi présent au village pour vous montrer toutes ses ressources en terme de fiches métiers. Agent de laboratoire ou assistant ingénieur en biochimie (Bac+2/3), ingénieur procédé ou de production en pétrochimie (Bac+5), responsable du labo d’analyses à la Police scientifique (Bac+5/8), technico-commercial en pharmaco-chimie (Bac+5)… et quantité d’autres carrières en France et à l’international.

Pour les non franciliens qui ne pourraient venir, le site villagedelachimie.org est à disposition, mais le village s’exporte aussi en province, en Rhône-Alpes, en Normandie et dans le Nord Pas de Calais.

Jean-Claude Bernier
Février 2016
 

- Événements
mediachimie

Une catastrophe écologique

La plus grande fuite de gaz jamais produite est en cours en Californie dans l’Aliso Canyon près de Los Angeles. Il s’agit d’une fuite près d’un forage sur le plus grand site de stockage de l’ouest des États-Unis exploité
...

La plus grande fuite de gaz jamais produite est en cours en Californie dans l’Aliso Canyon près de Los Angeles. Il s’agit d’une fuite près d’un forage sur le plus grand site de stockage de l’ouest des États-Unis exploité par la Southern California Gas Company.

Ce site est à 2500 m de profondeur et contient 2,3 milliards de m3 de méthane (CH4) la fuite s’est produit vers 1000 m de profondeur le 23 octobre et depuis c’est près de 72 000 tonnes de CH4 qui se sont échappés vers le quartier huppé de Porter Ranch. Les habitants ont d’abord été gênés par l’odeur, non pas du méthane qui est inodore, mais par les ajouts de dérivés soufrés tels que les mercaptans qui ont occasionnés des maux de têtes et des vomissements. Le méthane avec l’air étant inflammable, ce sont plus de 2000 personnes et 2 écoles qui ont été évacuées. On creuse un puits de secours à coté et on essaie de boucher le puits incriminé avec des boues et du ciment, mais il faudra sans doute attendre février pour résoudre le problème. Les media américains mettent en cause l’exploitant, qui n’a pas surveillé la corrosion des tubes rouillés dans le sol et qui a lâché dans l’atmosphère l’équivalent du quart des rejets de CO2 de la Californie en un an, car le méthane a un forçage radiatif 26 fois plus fort dans l’infrarouge que le CO2.

En France c’est environ 25,8 milliards de m3 de gaz qui sont stockés dans une quinzaine de sites souterrains entre 400 m et 1400 m de profondeur sur l’hexagone, d’où l’on tire environ 200 millions de m3 par Jour pour l’industrie et les particuliers.

Localisations des stockages de gaz naturel en France en 2009
source (
http://www.developpement-durable.gouv.fr/Le-stockage-de-gaz-naturel-en.html)