La maladie à coronavirus COVID-19, apparue en décembre 2019 à Wuhan en Chine sur un marché de la ville, a surpris les autorités chinoises par la rapidité de sa propagation. Elle a très vite touché des centaines d’habitants. Malgré la quarantaine qui a confiné 11 millions de Chinois chez eux fin janvier, la contagion a gagné plusieurs autres villes et d’autres foyers se sont fait jour non seulement en Chine mais au Japon, en Corée du Sud, en Iran, et tout récemment en Italie du Nord. Fin février, ce sont plus de 82 000 malades atteints et 2800 décès dans le monde, et outre les villes de la province de Hubei dont Wuhan est la capitale, plusieurs villes d’Italie sont fermées. Le patron de l’OMS s’inquiète d’une pandémie qui pourrait s’étendre mondialement, et la France, comme d’autres pays, s’y prépare.
Plus petit que 100 nanomètres un virus ne peut pas être considéré comme un organisme vivant car il ne peut pas se répliquer seul. Il est constitué d’un assemblage de molécules, pour l’essentiel des ADN ou ARN et des protéines. Lors du contact avec un organisme vivant (homme, animal, plante…) le virus va utiliser la machinerie moléculaire de cet organisme vivant pour se répliquer et se démultiplier en plusieurs copies qui vont coloniser plusieurs centres vitaux de son hôte : voies respiratoires, intestins, sang…
Les coronavirus sont presque toujours d’origine animale, l’habitude chinoise d’acheter sur les marchés de petits animaux vivants comme les poissons, les volailles, les petits mammifères, confinés dans un espace restreint, ont sûrement développé une énorme charge virale. De plus la concentration des habitants en mégapoles de plusieurs millions d’habitants a probablement favorisé la propagation du virus. Il faut y ajouter le fort développement de la Chine depuis plusieurs années qui entraîne des migrations humaines nationales et internationales dans tous les secteurs : commercial, technique et scientifique.
Les coronavirus doivent leur nom à une petite couronne de protéines pointues dites spicules. Il y a deux sortes de coronavirus : ceux peu pathogènes qui circulent en France chaque année par temps froid et humide en hiver et disparaissent en été, provoquant les rhumes, laryngites et grippes saisonnières et ceux au comportement hautement pathogène dont deux sont déjà connus le SARS-CoV en 2003 responsable du SRAS (Syndrome Respiratoire Aigu Sévère) et le MERS-CoV responsable du MERS (Middle East respiratory syndrome) en 2012, qui ont fait des victimes en Chine et au Moyen-Orient. Ce nouveau virus, temporairement appelé en janvier 2019–nCoV et définitivement nommé SARS-CoV-2 le 11 février 2020 par l’ICTV (Comité international de taxonomie des virus), était inconnu jusqu’à ce que plusieurs laboratoires dans le monde dont celui de l’Institut Pasteur en France l’isolent, grâce aux prélèvements positifs. Le laboratoire parisien commence à le cultiver sur des souches pathogènes dès le 24 janvier 2020. La collaboration internationale a alors permis très rapidement le séquençage complet du génome de ce coronavirus et ainsi de commencer à étudier sa structure pour comprendre la façon dont il nous attaque (1) [3].
Le virus transmis par des postillons ou des aérosols émis par les malades pénètre dans les cellules nasales. Grâce à cette couronne de protéines pointues (spicules) il se verrouille sur une protéine de surface des cellules appelée récepteur. On peut aussi assimiler les spicules à une « clé » qui se fixe sur la « serrure » du récepteur (2) [4]. Le virus libère alors via une vésicule dite endosome son ARN (3) [5] dans le cytoplasme de la cellule qui produit alors les protéines virales nécessaires à sa réplication. Avec son enzyme viral il fait alors de multiples copies de son ARN et donne naissance à plusieurs virus répliqués qui s’échappent de la cellule pour attaquer d’autres cellules et ceci en quelques heures.
Grâce à la rapidité du séquençage de son génome, on a pu remonter à la structure du coronavirus. Il y a une semaine une équipe de chercheurs de l’université d’Austin (Texas, USA) a pu mettre au point sa structure 3D et de la partie des spicules (la clé) en utilisant la cryomicroscopie électronique moyen d’étude dont les inventeurs avaient obtenu le prix Nobel de chimie 2017 (4) [6]. On peut par ce moyen obtenir de multitudes d’images des molécules figées à basse température et même en faire de petits films. Cette étude a montré de plus que la porte d’entrée dans les cellules humaines était bien le récepteur ACE2 déjà identifié lors du SRAS, mais la « clé » était ici semble-t-il encore mieux adaptée à sa serrure, ce qui pourrait expliquer la rapidité de sa propagation.
Les pistes pour traiter les malades sont alors de deux types :
L’immunologie par biosynthèse consiste à produire des anticorps dans la cellule en y transférant deux ADN, ces deux ADN seront transcrits en ARN messagers qui vont migrer dans le cytosol et s’ajouteront à la protéine de surface empêchant le virus de se fixer sur sa cible (si la serrure change la clé ne marche plus) (6) [8]. C’est aussi une piste pour la vaccination, comme celle d’injecter des anticorps venus de malades guéris. Pour l’instant, les traitements des malades utilisent des molécules comme la chloroquine, le remdesivir ou des inhibiteurs tels que le lopinavir ou le ritonavir et l’interféron déjà connus et utilisés dans les cas de syndromes respiratoires aigus et donnant de bons résultats comme à Bordeaux sur le malade qui est sorti récemment de clinique. Pour un éventuel vaccin il faudra sans doute attendre plusieurs années malgré le nombre de laboratoires de recherche en biochimie et pharmacie qui se sont mis sur le sujet.
En France un plan de veille et de prévention est mis en place en mobilisant plus de 100 hôpitaux et en passant les laboratoires d’analyses à une capacité de plusieurs milliers de tests de dépistage par jour. Une bonne règle personnelle d’hygiène est de se laver les mains régulièrement et de protéger la bouche en cas de toux, cela vous évitera sans doute déjà le rhume ou la grippe de saison (7) [9].
Jean-Claude Bernier, Constantin Agouridas et Catherine Vialle
27 février 2020
Pour en savoir plus
(1) Chimie du et pour le vivant : objectif santé [3]
(2) La chimie supramoléculaire et ses formes modernes [4]
(3) Cibler l’ADN : pour la compréhension du vivant [5]
(4) Le prix Nobel 2017 [6]
(5) Molécules hybrides pour de nouveaux médicaments : mythe ou réalité ? [7]
(6) De la biologie de synthèse aux biomédicaments [8]
(7) La chimie et les produits d’hygiène et de soins corporels (Chimie et… Junior) [9]
L'image d'illustration, réalisée par Centers for Disease Control and Prevention (CDC), révèle la morphologie des coronavirus.
Liens:
[1] http://www.mediachimie.org/send-friend/2919/?ajax
[2] http://www.mediachimie.org/print/print/2919
[3] http://www.mediachimie.org/node/332
[4] http://www.mediachimie.org/node/483
[5] http://www.mediachimie.org/node/294
[6] http://www.mediachimie.org/node/1872
[7] http://www.mediachimie.org/node/297
[8] http://www.mediachimie.org/node/2383
[9] http://www.mediachimie.org/node/2673